Spaces:
Running
on
Zero
Running
on
Zero
_base_ = [ | |
'../_base_/datasets/coco_detection.py', | |
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' | |
] | |
# model settings | |
model = dict( | |
type='FOVEA', | |
data_preprocessor=dict( | |
type='DetDataPreprocessor', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
bgr_to_rgb=True, | |
pad_size_divisor=32), | |
backbone=dict( | |
type='ResNet', | |
depth=50, | |
num_stages=4, | |
out_indices=(0, 1, 2, 3), | |
frozen_stages=1, | |
norm_cfg=dict(type='BN', requires_grad=True), | |
norm_eval=True, | |
style='pytorch', | |
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')), | |
neck=dict( | |
type='FPN', | |
in_channels=[256, 512, 1024, 2048], | |
out_channels=256, | |
start_level=1, | |
num_outs=5, | |
add_extra_convs='on_input'), | |
bbox_head=dict( | |
type='FoveaHead', | |
num_classes=80, | |
in_channels=256, | |
stacked_convs=4, | |
feat_channels=256, | |
strides=[8, 16, 32, 64, 128], | |
base_edge_list=[16, 32, 64, 128, 256], | |
scale_ranges=((1, 64), (32, 128), (64, 256), (128, 512), (256, 2048)), | |
sigma=0.4, | |
with_deform=False, | |
loss_cls=dict( | |
type='FocalLoss', | |
use_sigmoid=True, | |
gamma=1.50, | |
alpha=0.4, | |
loss_weight=1.0), | |
loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0)), | |
# training and testing settings | |
train_cfg=dict(), | |
test_cfg=dict( | |
nms_pre=1000, | |
score_thr=0.05, | |
nms=dict(type='nms', iou_threshold=0.5), | |
max_per_img=100)) | |
train_dataloader = dict(batch_size=4, num_workers=4) | |
# optimizer | |
optim_wrapper = dict( | |
optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)) | |