Spaces:
Running
on
Zero
Running
on
Zero
_base_ = [ | |
'../_base_/models/faster-rcnn_r50_fpn.py', | |
'../_base_/datasets/coco_detection.py', | |
'../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' | |
] | |
norm_cfg = dict(type='BN', requires_grad=True) | |
image_size = (640, 640) | |
batch_augments = [dict(type='BatchFixedSizePad', size=image_size)] | |
model = dict( | |
data_preprocessor=dict(pad_size_divisor=64, batch_augments=batch_augments), | |
backbone=dict(norm_cfg=norm_cfg, norm_eval=False), | |
neck=dict(norm_cfg=norm_cfg), | |
roi_head=dict(bbox_head=dict(norm_cfg=norm_cfg))) | |
dataset_type = 'CocoDataset' | |
data_root = 'data/coco/' | |
train_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict( | |
type='RandomResize', | |
scale=image_size, | |
ratio_range=(0.8, 1.2), | |
keep_ratio=True), | |
dict( | |
type='RandomCrop', | |
crop_type='absolute_range', | |
crop_size=image_size, | |
allow_negative_crop=True), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='PackDetInputs') | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}), | |
dict(type='Resize', scale=image_size, keep_ratio=True), | |
dict( | |
type='PackDetInputs', | |
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | |
'scale_factor')) | |
] | |
train_dataloader = dict( | |
batch_size=8, num_workers=4, dataset=dict(pipeline=train_pipeline)) | |
val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) | |
test_dataloader = val_dataloader | |
# learning policy | |
max_epochs = 50 | |
train_cfg = dict(max_epochs=max_epochs, val_interval=2) | |
param_scheduler = [ | |
dict(type='LinearLR', start_factor=0.1, by_epoch=False, begin=0, end=1000), | |
dict( | |
type='MultiStepLR', | |
begin=0, | |
end=max_epochs, | |
by_epoch=True, | |
milestones=[30, 40], | |
gamma=0.1) | |
] | |
# optimizer | |
optim_wrapper = dict( | |
type='OptimWrapper', | |
optimizer=dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=0.0001), | |
paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True), | |
clip_grad=None) | |
# NOTE: `auto_scale_lr` is for automatically scaling LR, | |
# USER SHOULD NOT CHANGE ITS VALUES. | |
# base_batch_size = (8 GPUs) x (8 samples per GPU) | |
auto_scale_lr = dict(base_batch_size=64) | |