Spaces:
Running
on
Zero
Running
on
Zero
# model settings | |
data_preprocessor = dict( | |
type='DetDataPreprocessor', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
bgr_to_rgb=True, | |
pad_size_divisor=1) | |
model = dict( | |
type='SingleStageDetector', | |
data_preprocessor=data_preprocessor, | |
backbone=dict( | |
type='MobileNetV2', | |
out_indices=(4, 7), | |
norm_cfg=dict(type='BN', eps=0.001, momentum=0.03), | |
init_cfg=dict(type='TruncNormal', layer='Conv2d', std=0.03)), | |
neck=dict( | |
type='SSDNeck', | |
in_channels=(96, 1280), | |
out_channels=(96, 1280, 512, 256, 256, 128), | |
level_strides=(2, 2, 2, 2), | |
level_paddings=(1, 1, 1, 1), | |
l2_norm_scale=None, | |
use_depthwise=True, | |
norm_cfg=dict(type='BN', eps=0.001, momentum=0.03), | |
act_cfg=dict(type='ReLU6'), | |
init_cfg=dict(type='TruncNormal', layer='Conv2d', std=0.03)), | |
bbox_head=dict( | |
type='SSDHead', | |
in_channels=(96, 1280, 512, 256, 256, 128), | |
num_classes=80, | |
use_depthwise=True, | |
norm_cfg=dict(type='BN', eps=0.001, momentum=0.03), | |
act_cfg=dict(type='ReLU6'), | |
init_cfg=dict(type='Normal', layer='Conv2d', std=0.001), | |
# set anchor size manually instead of using the predefined | |
# SSD300 setting. | |
anchor_generator=dict( | |
type='SSDAnchorGenerator', | |
scale_major=False, | |
strides=[16, 32, 64, 107, 160, 320], | |
ratios=[[2, 3], [2, 3], [2, 3], [2, 3], [2, 3], [2, 3]], | |
min_sizes=[48, 100, 150, 202, 253, 304], | |
max_sizes=[100, 150, 202, 253, 304, 320]), | |
bbox_coder=dict( | |
type='DeltaXYWHBBoxCoder', | |
target_means=[.0, .0, .0, .0], | |
target_stds=[0.1, 0.1, 0.2, 0.2])), | |
# model training and testing settings | |
train_cfg=dict( | |
assigner=dict( | |
type='MaxIoUAssigner', | |
pos_iou_thr=0.5, | |
neg_iou_thr=0.5, | |
min_pos_iou=0., | |
ignore_iof_thr=-1, | |
gt_max_assign_all=False), | |
sampler=dict(type='PseudoSampler'), | |
smoothl1_beta=1., | |
allowed_border=-1, | |
pos_weight=-1, | |
neg_pos_ratio=3, | |
debug=False), | |
test_cfg=dict( | |
nms_pre=1000, | |
nms=dict(type='nms', iou_threshold=0.45), | |
min_bbox_size=0, | |
score_thr=0.02, | |
max_per_img=200)) | |
env_cfg = dict(cudnn_benchmark=True) | |
# dataset settings | |
dataset_type = 'CocoDataset' | |
data_root = 'data/coco/' | |
input_size = 320 | |
train_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict( | |
type='Expand', | |
mean=data_preprocessor['mean'], | |
to_rgb=data_preprocessor['bgr_to_rgb'], | |
ratio_range=(1, 4)), | |
dict( | |
type='MinIoURandomCrop', | |
min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), | |
min_crop_size=0.3), | |
dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), | |
dict(type='RandomFlip', prob=0.5), | |
dict( | |
type='PhotoMetricDistortion', | |
brightness_delta=32, | |
contrast_range=(0.5, 1.5), | |
saturation_range=(0.5, 1.5), | |
hue_delta=18), | |
dict(type='PackDetInputs') | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='Resize', scale=(input_size, input_size), keep_ratio=False), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict( | |
type='PackDetInputs', | |
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | |
'scale_factor')) | |
] | |
train_dataloader = dict( | |
batch_size=24, | |
num_workers=4, | |
batch_sampler=None, | |
dataset=dict( | |
_delete_=True, | |
type='RepeatDataset', | |
times=5, | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_root, | |
ann_file='annotations/instances_train2017.json', | |
data_prefix=dict(img='train2017/'), | |
filter_cfg=dict(filter_empty_gt=True, min_size=32), | |
pipeline=train_pipeline))) | |
val_dataloader = dict( | |
batch_size=8, | |
num_workers=2, | |
persistent_workers=True, | |
drop_last=False, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type=dataset_type, | |
data_root=data_root, | |
ann_file='annotations/instances_val2017.json', | |
data_prefix=dict(img='val2017/'), | |
test_mode=True, | |
pipeline=test_pipeline)) | |
test_dataloader = val_dataloader | |