Spaces:
Running
on
Zero
Running
on
Zero
# model settings | |
model = dict( | |
type='YOLOV3', | |
pretrained='open-mmlab://darknet53', | |
backbone=dict(type='Darknet', depth=53, out_indices=(3, 4, 5)), | |
neck=dict( | |
type='YOLOV3Neck', | |
num_scales=3, | |
in_channels=[1024, 512, 256], | |
out_channels=[512, 256, 128]), | |
bbox_head=dict( | |
type='YOLOV3Head', | |
num_classes=80, | |
in_channels=[512, 256, 128], | |
out_channels=[1024, 512, 256], | |
anchor_generator=dict( | |
type='YOLOAnchorGenerator', | |
base_sizes=[[(116, 90), (156, 198), (373, 326)], | |
[(30, 61), (62, 45), (59, 119)], | |
[(10, 13), (16, 30), (33, 23)]], | |
strides=[32, 16, 8]), | |
bbox_coder=dict(type='YOLOBBoxCoder'), | |
featmap_strides=[32, 16, 8], | |
loss_cls=dict( | |
type='CrossEntropyLoss', | |
use_sigmoid=True, | |
loss_weight=1.0, | |
reduction='sum'), | |
loss_conf=dict( | |
type='CrossEntropyLoss', | |
use_sigmoid=True, | |
loss_weight=1.0, | |
reduction='sum'), | |
loss_xy=dict( | |
type='CrossEntropyLoss', | |
use_sigmoid=True, | |
loss_weight=2.0, | |
reduction='sum'), | |
loss_wh=dict(type='MSELoss', loss_weight=2.0, reduction='sum')), | |
# training and testing settings | |
train_cfg=dict( | |
assigner=dict( | |
type='GridAssigner', | |
pos_iou_thr=0.5, | |
neg_iou_thr=0.5, | |
min_pos_iou=0)), | |
test_cfg=dict( | |
nms_pre=1000, | |
min_bbox_size=0, | |
score_thr=0.05, | |
conf_thr=0.005, | |
nms=dict(type='nms', iou_threshold=0.45), | |
max_per_img=100)) | |
# dataset settings | |
dataset_type = 'CocoDataset' | |
data_root = 'data/coco' | |
img_norm_cfg = dict(mean=[0, 0, 0], std=[255., 255., 255.], to_rgb=True) | |
train_pipeline = [ | |
dict(type='LoadImageFromFile', to_float32=True), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict(type='PhotoMetricDistortion'), | |
dict( | |
type='Expand', | |
mean=img_norm_cfg['mean'], | |
to_rgb=img_norm_cfg['to_rgb'], | |
ratio_range=(1, 2)), | |
dict( | |
type='MinIoURandomCrop', | |
min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9), | |
min_crop_size=0.3), | |
dict(type='Resize', img_scale=(320, 320), keep_ratio=True), | |
dict(type='RandomFlip', flip_ratio=0.5), | |
dict(type='Normalize', **img_norm_cfg), | |
dict(type='Pad', size_divisor=32), | |
dict(type='DefaultFormatBundle'), | |
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict( | |
type='MultiScaleFlipAug', | |
img_scale=(320, 320), | |
flip=False, | |
transforms=[ | |
dict(type='Resize', keep_ratio=True), | |
dict(type='RandomFlip'), | |
dict(type='Normalize', **img_norm_cfg), | |
dict(type='Pad', size_divisor=32), | |
dict(type='DefaultFormatBundle'), | |
dict(type='Collect', keys=['img']) | |
]) | |
] | |
data = dict( | |
samples_per_gpu=8, | |
workers_per_gpu=4, | |
train=dict( | |
type=dataset_type, | |
ann_file=f'{data_root}/annotations/instances_train2017.json', | |
img_prefix=f'{data_root}/train2017/', | |
pipeline=train_pipeline), | |
val=dict( | |
type=dataset_type, | |
ann_file=f'{data_root}/annotations/instances_val2017.json', | |
img_prefix=f'{data_root}/val2017/', | |
pipeline=test_pipeline), | |
test=dict( | |
type=dataset_type, | |
ann_file=f'{data_root}/annotations/instances_val2017.json', | |
img_prefix=f'{data_root}/val2017/', | |
pipeline=test_pipeline)) | |
# optimizer | |
optimizer = dict(type='SGD', lr=0.001, momentum=0.9, weight_decay=0.0005) | |
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) | |
# learning policy | |
lr_config = dict( | |
policy='step', | |
warmup='linear', | |
warmup_iters=2000, # same as burn-in in darknet | |
warmup_ratio=0.1, | |
step=[218, 246]) | |
# runtime settings | |
runner = dict(type='EpochBasedRunner', max_epochs=273) | |
evaluation = dict(interval=1, metric=['bbox']) | |
checkpoint_config = dict(interval=1) | |
# yapf:disable | |
log_config = dict( | |
interval=50, | |
hooks=[ | |
dict(type='TextLoggerHook'), | |
# dict(type='TensorboardLoggerHook') | |
]) | |
# yapf:enable | |
custom_hooks = [dict(type='NumClassCheckHook')] | |
dist_params = dict(backend='nccl') | |
log_level = 'INFO' | |
load_from = None | |
resume_from = None | |
workflow = [('train', 1)] | |