Spaces:
Running
on
Zero
Running
on
Zero
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=300, val_interval=10) | |
val_cfg = dict(type='ValLoop') | |
test_cfg = dict(type='TestLoop') | |
param_scheduler = [ | |
dict( | |
type='mmdet.QuadraticWarmupLR', | |
by_epoch=True, | |
begin=0, | |
end=5, | |
convert_to_iter_based=True), | |
dict( | |
type='CosineAnnealingLR', | |
eta_min=0.0005, | |
begin=5, | |
T_max=285, | |
end=285, | |
by_epoch=True, | |
convert_to_iter_based=True), | |
dict(type='ConstantLR', by_epoch=True, factor=1, begin=285, end=300) | |
] | |
optim_wrapper = dict( | |
type='OptimWrapper', | |
optimizer=dict( | |
type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005, nesterov=True), | |
paramwise_cfg=dict(norm_decay_mult=0.0, bias_decay_mult=0.0)) | |
auto_scale_lr = dict(enable=False, base_batch_size=64) | |
default_scope = 'mmdet' | |
default_hooks = dict( | |
timer=dict(type='IterTimerHook'), | |
logger=dict(type='LoggerHook', interval=50), | |
param_scheduler=dict(type='ParamSchedulerHook'), | |
checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=3), | |
sampler_seed=dict(type='DistSamplerSeedHook'), | |
visualization=dict(type='DetVisualizationHook')) | |
env_cfg = dict( | |
cudnn_benchmark=False, | |
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), | |
dist_cfg=dict(backend='nccl')) | |
vis_backends = [dict(type='LocalVisBackend')] | |
visualizer = dict( | |
type='DetLocalVisualizer', | |
vis_backends=[dict(type='LocalVisBackend')], | |
name='visualizer') | |
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True) | |
log_level = 'INFO' | |
load_from = 'https://download.openmmlab.com/mmdetection/' \ | |
'v2.0/yolox/yolox_s_8x8_300e_coco/' \ | |
'yolox_s_8x8_300e_coco_20211121_095711-4592a793.pth' | |
resume = False | |
img_scale = (640, 640) | |
model = dict( | |
type='YOLOX', | |
data_preprocessor=dict( | |
type='DetDataPreprocessor', | |
pad_size_divisor=32, | |
batch_augments=[ | |
dict( | |
type='BatchSyncRandomResize', | |
random_size_range=(480, 800), | |
size_divisor=32, | |
interval=10) | |
]), | |
backbone=dict( | |
type='CSPDarknet', | |
deepen_factor=0.33, | |
widen_factor=0.5, | |
out_indices=(2, 3, 4), | |
use_depthwise=False, | |
spp_kernal_sizes=(5, 9, 13), | |
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), | |
act_cfg=dict(type='Swish')), | |
neck=dict( | |
type='YOLOXPAFPN', | |
in_channels=[128, 256, 512], | |
out_channels=128, | |
num_csp_blocks=1, | |
use_depthwise=False, | |
upsample_cfg=dict(scale_factor=2, mode='nearest'), | |
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), | |
act_cfg=dict(type='Swish')), | |
bbox_head=dict( | |
type='YOLOXHead', | |
num_classes=1, | |
in_channels=128, | |
feat_channels=128, | |
stacked_convs=2, | |
strides=(8, 16, 32), | |
use_depthwise=False, | |
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001), | |
act_cfg=dict(type='Swish'), | |
loss_cls=dict( | |
type='CrossEntropyLoss', | |
use_sigmoid=True, | |
reduction='sum', | |
loss_weight=1.0), | |
loss_bbox=dict( | |
type='IoULoss', | |
mode='square', | |
eps=1e-16, | |
reduction='sum', | |
loss_weight=5.0), | |
loss_obj=dict( | |
type='CrossEntropyLoss', | |
use_sigmoid=True, | |
reduction='sum', | |
loss_weight=1.0), | |
loss_l1=dict(type='L1Loss', reduction='sum', loss_weight=1.0)), | |
train_cfg=dict(assigner=dict(type='SimOTAAssigner', center_radius=2.5)), | |
test_cfg=dict(score_thr=0.01, nms=dict(type='nms', iou_threshold=0.65))) | |
data_root = 'data/coco/' | |
dataset_type = 'CocoDataset' | |
backend_args = dict(backend='local') | |
train_pipeline = [ | |
dict(type='Mosaic', img_scale=(640, 640), pad_val=114.0), | |
dict( | |
type='RandomAffine', scaling_ratio_range=(0.1, 2), | |
border=(-320, -320)), | |
dict( | |
type='MixUp', | |
img_scale=(640, 640), | |
ratio_range=(0.8, 1.6), | |
pad_val=114.0), | |
dict(type='YOLOXHSVRandomAug'), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='Resize', scale=(640, 640), keep_ratio=True), | |
dict( | |
type='Pad', | |
pad_to_square=True, | |
pad_val=dict(img=(114.0, 114.0, 114.0))), | |
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False), | |
dict(type='PackDetInputs') | |
] | |
train_dataset = dict( | |
type='MultiImageMixDataset', | |
dataset=dict( | |
type='CocoDataset', | |
data_root='data/coco/', | |
ann_file='annotations/instances_train2017.json', | |
data_prefix=dict(img='train2017/'), | |
pipeline=[ | |
dict(type='LoadImageFromFile', backend_args=dict(backend='local')), | |
dict(type='LoadAnnotations', with_bbox=True) | |
], | |
filter_cfg=dict(filter_empty_gt=False, min_size=32)), | |
pipeline=[ | |
dict(type='Mosaic', img_scale=(640, 640), pad_val=114.0), | |
dict( | |
type='RandomAffine', | |
scaling_ratio_range=(0.1, 2), | |
border=(-320, -320)), | |
dict( | |
type='MixUp', | |
img_scale=(640, 640), | |
ratio_range=(0.8, 1.6), | |
pad_val=114.0), | |
dict(type='YOLOXHSVRandomAug'), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='Resize', scale=(640, 640), keep_ratio=True), | |
dict( | |
type='Pad', | |
pad_to_square=True, | |
pad_val=dict(img=(114.0, 114.0, 114.0))), | |
dict( | |
type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False), | |
dict(type='PackDetInputs') | |
]) | |
test_pipeline = [ | |
dict(type='LoadImageFromFile', backend_args=dict(backend='local')), | |
dict(type='Resize', scale=(640, 640), keep_ratio=True), | |
dict( | |
type='Pad', | |
pad_to_square=True, | |
pad_val=dict(img=(114.0, 114.0, 114.0))), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict( | |
type='PackDetInputs', | |
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | |
'scale_factor')) | |
] | |
train_dataloader = dict( | |
batch_size=8, | |
num_workers=4, | |
persistent_workers=True, | |
sampler=dict(type='DefaultSampler', shuffle=True), | |
dataset=dict( | |
type='MultiImageMixDataset', | |
dataset=dict( | |
type='CocoDataset', | |
data_root='data/coco/', | |
ann_file='annotations/coco_face_train.json', | |
data_prefix=dict(img='train2017/'), | |
pipeline=[ | |
dict( | |
type='LoadImageFromFile', | |
backend_args=dict(backend='local')), | |
dict(type='LoadAnnotations', with_bbox=True) | |
], | |
filter_cfg=dict(filter_empty_gt=False, min_size=32), | |
metainfo=dict(CLASSES=('person', ), PALETTE=(220, 20, 60))), | |
pipeline=[ | |
dict(type='Mosaic', img_scale=(640, 640), pad_val=114.0), | |
dict( | |
type='RandomAffine', | |
scaling_ratio_range=(0.1, 2), | |
border=(-320, -320)), | |
dict( | |
type='MixUp', | |
img_scale=(640, 640), | |
ratio_range=(0.8, 1.6), | |
pad_val=114.0), | |
dict(type='YOLOXHSVRandomAug'), | |
dict(type='RandomFlip', prob=0.5), | |
dict(type='Resize', scale=(640, 640), keep_ratio=True), | |
dict( | |
type='Pad', | |
pad_to_square=True, | |
pad_val=dict(img=(114.0, 114.0, 114.0))), | |
dict( | |
type='FilterAnnotations', | |
min_gt_bbox_wh=(1, 1), | |
keep_empty=False), | |
dict(type='PackDetInputs') | |
])) | |
val_dataloader = dict( | |
batch_size=8, | |
num_workers=4, | |
persistent_workers=True, | |
drop_last=False, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type='CocoDataset', | |
data_root='data/coco/', | |
ann_file='annotations/coco_face_val.json', | |
data_prefix=dict(img='val2017/'), | |
test_mode=True, | |
pipeline=[ | |
dict(type='LoadImageFromFile', backend_args=dict(backend='local')), | |
dict(type='Resize', scale=(640, 640), keep_ratio=True), | |
dict( | |
type='Pad', | |
pad_to_square=True, | |
pad_val=dict(img=(114.0, 114.0, 114.0))), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict( | |
type='PackDetInputs', | |
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | |
'scale_factor')) | |
], | |
metainfo=dict(CLASSES=('person', ), PALETTE=(220, 20, 60)))) | |
test_dataloader = dict( | |
batch_size=8, | |
num_workers=4, | |
persistent_workers=True, | |
drop_last=False, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type='CocoDataset', | |
data_root='data/coco/', | |
ann_file='annotations/coco_face_val.json', | |
data_prefix=dict(img='val2017/'), | |
test_mode=True, | |
pipeline=[ | |
dict(type='LoadImageFromFile', backend_args=dict(backend='local')), | |
dict(type='Resize', scale=(640, 640), keep_ratio=True), | |
dict( | |
type='Pad', | |
pad_to_square=True, | |
pad_val=dict(img=(114.0, 114.0, 114.0))), | |
dict(type='LoadAnnotations', with_bbox=True), | |
dict( | |
type='PackDetInputs', | |
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | |
'scale_factor')) | |
], | |
metainfo=dict(CLASSES=('person', ), PALETTE=(220, 20, 60)))) | |
val_evaluator = dict( | |
type='CocoMetric', | |
ann_file='data/coco/annotations/coco_face_val.json', | |
metric='bbox') | |
test_evaluator = dict( | |
type='CocoMetric', | |
ann_file='data/coco/annotations/instances_val2017.json', | |
metric='bbox') | |
max_epochs = 300 | |
num_last_epochs = 15 | |
interval = 10 | |
base_lr = 0.01 | |
custom_hooks = [ | |
dict(type='YOLOXModeSwitchHook', num_last_epochs=15, priority=48), | |
dict(type='SyncNormHook', priority=48), | |
dict( | |
type='EMAHook', | |
ema_type='ExpMomentumEMA', | |
momentum=0.0001, | |
strict_load=False, | |
update_buffers=True, | |
priority=49) | |
] | |
metainfo = dict(CLASSES=('person', ), PALETTE=(220, 20, 60)) | |
launcher = 'pytorch' | |