Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) OpenMMLab. All rights reserved. | |
from collections import OrderedDict | |
from typing import Tuple | |
import numpy as np | |
import torch | |
from torch import Tensor, nn | |
from mmpose.evaluation.functional import keypoint_mpjpe | |
from mmpose.models.utils.tta import flip_coordinates | |
from mmpose.registry import KEYPOINT_CODECS, MODELS | |
from mmpose.utils.tensor_utils import to_numpy | |
from mmpose.utils.typing import (ConfigType, OptConfigType, OptSampleList, | |
Predictions) | |
from ..base_head import BaseHead | |
class MotionRegressionHead(BaseHead): | |
"""Regression head of `MotionBERT`_ by Zhu et al (2022). | |
Args: | |
in_channels (int): Number of input channels. Default: 256. | |
out_channels (int): Number of output channels. Default: 3. | |
embedding_size (int): Number of embedding channels. Default: 512. | |
loss (Config): Config for keypoint loss. Defaults to use | |
:class:`MSELoss` | |
decoder (Config, optional): The decoder config that controls decoding | |
keypoint coordinates from the network output. Defaults to ``None`` | |
init_cfg (Config, optional): Config to control the initialization. See | |
:attr:`default_init_cfg` for default settings | |
.. _`MotionBERT`: https://arxiv.org/abs/2210.06551 | |
""" | |
_version = 2 | |
def __init__(self, | |
in_channels: int = 256, | |
out_channels: int = 3, | |
embedding_size: int = 512, | |
loss: ConfigType = dict( | |
type='MSELoss', use_target_weight=True), | |
decoder: OptConfigType = None, | |
init_cfg: OptConfigType = None): | |
if init_cfg is None: | |
init_cfg = self.default_init_cfg | |
super().__init__(init_cfg) | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.loss_module = MODELS.build(loss) | |
if decoder is not None: | |
self.decoder = KEYPOINT_CODECS.build(decoder) | |
else: | |
self.decoder = None | |
# Define fully-connected layers | |
self.pre_logits = nn.Sequential( | |
OrderedDict([('fc', nn.Linear(in_channels, embedding_size)), | |
('act', nn.Tanh())])) | |
self.fc = nn.Linear( | |
embedding_size, | |
out_channels) if embedding_size > 0 else nn.Identity() | |
def forward(self, feats: Tuple[Tensor]) -> Tensor: | |
"""Forward the network. The input is multi scale feature maps and the | |
output is the coordinates. | |
Args: | |
feats (Tuple[Tensor]): Multi scale feature maps. | |
Returns: | |
Tensor: Output coordinates (and sigmas[optional]). | |
""" | |
x = feats # (B, F, K, in_channels) | |
x = self.pre_logits(x) # (B, F, K, embedding_size) | |
x = self.fc(x) # (B, F, K, out_channels) | |
return x | |
def predict(self, | |
feats: Tuple[Tensor], | |
batch_data_samples: OptSampleList, | |
test_cfg: ConfigType = {}) -> Predictions: | |
"""Predict results from outputs. | |
Returns: | |
preds (sequence[InstanceData]): Prediction results. | |
Each contains the following fields: | |
- keypoints: Predicted keypoints of shape (B, N, K, D). | |
- keypoint_scores: Scores of predicted keypoints of shape | |
(B, N, K). | |
""" | |
if test_cfg.get('flip_test', False): | |
# TTA: flip test -> feats = [orig, flipped] | |
assert isinstance(feats, list) and len(feats) == 2 | |
flip_indices = batch_data_samples[0].metainfo['flip_indices'] | |
_feats, _feats_flip = feats | |
_batch_coords = self.forward(_feats) | |
_batch_coords_flip = torch.stack([ | |
flip_coordinates( | |
_batch_coord_flip, | |
flip_indices=flip_indices, | |
shift_coords=test_cfg.get('shift_coords', True), | |
input_size=(1, 1)) | |
for _batch_coord_flip in self.forward(_feats_flip) | |
], | |
dim=0) | |
batch_coords = (_batch_coords + _batch_coords_flip) * 0.5 | |
else: | |
batch_coords = self.forward(feats) | |
# Restore global position with camera_param and factor | |
camera_param = batch_data_samples[0].metainfo.get('camera_param', None) | |
if camera_param is not None: | |
w = torch.stack([ | |
torch.from_numpy(np.array([b.metainfo['camera_param']['w']])) | |
for b in batch_data_samples | |
]) | |
h = torch.stack([ | |
torch.from_numpy(np.array([b.metainfo['camera_param']['h']])) | |
for b in batch_data_samples | |
]) | |
else: | |
w = torch.stack([ | |
torch.empty((0), dtype=torch.float32) | |
for _ in batch_data_samples | |
]) | |
h = torch.stack([ | |
torch.empty((0), dtype=torch.float32) | |
for _ in batch_data_samples | |
]) | |
factor = batch_data_samples[0].metainfo.get('factor', None) | |
if factor is not None: | |
factor = torch.stack([ | |
torch.from_numpy(b.metainfo['factor']) | |
for b in batch_data_samples | |
]) | |
else: | |
factor = torch.stack([ | |
torch.empty((0), dtype=torch.float32) | |
for _ in batch_data_samples | |
]) | |
preds = self.decode((batch_coords, w, h, factor)) | |
return preds | |
def loss(self, | |
inputs: Tuple[Tensor], | |
batch_data_samples: OptSampleList, | |
train_cfg: ConfigType = {}) -> dict: | |
"""Calculate losses from a batch of inputs and data samples.""" | |
pred_outputs = self.forward(inputs) | |
lifting_target_label = torch.stack([ | |
d.gt_instance_labels.lifting_target_label | |
for d in batch_data_samples | |
]) | |
lifting_target_weight = torch.stack([ | |
d.gt_instance_labels.lifting_target_weight | |
for d in batch_data_samples | |
]) | |
# calculate losses | |
losses = dict() | |
loss = self.loss_module(pred_outputs, lifting_target_label, | |
lifting_target_weight.unsqueeze(-1)) | |
losses.update(loss_pose3d=loss) | |
# calculate accuracy | |
mpjpe_err = keypoint_mpjpe( | |
pred=to_numpy(pred_outputs), | |
gt=to_numpy(lifting_target_label), | |
mask=to_numpy(lifting_target_weight) > 0) | |
mpjpe_pose = torch.tensor( | |
mpjpe_err, device=lifting_target_label.device) | |
losses.update(mpjpe=mpjpe_pose) | |
return losses | |
def default_init_cfg(self): | |
init_cfg = [dict(type='TruncNormal', layer=['Linear'], std=0.02)] | |
return init_cfg | |