Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
def fp16_clamp(x, min_val=None, max_val=None): | |
if not x.is_cuda and x.dtype == torch.float16: | |
return x.float().clamp(min_val, max_val).half() | |
return x.clamp(min_val, max_val) | |
def bbox_overlaps(bboxes1, | |
bboxes2, | |
mode='iou', | |
is_aligned=False, | |
eps=1e-6) -> torch.Tensor: | |
"""Calculate overlap between two sets of bounding boxes. | |
Args: | |
bboxes1 (torch.Tensor): Bounding boxes of shape (..., m, 4) or empty. | |
bboxes2 (torch.Tensor): Bounding boxes of shape (..., n, 4) or empty. | |
mode (str): "iou" (intersection over union), | |
"iof" (intersection over foreground), | |
or "giou" (generalized intersection over union). | |
Defaults to "iou". | |
is_aligned (bool, optional): If True, then m and n must be equal. | |
Default False. | |
eps (float, optional): A small constant added to the denominator for | |
numerical stability. Default 1e-6. | |
Returns: | |
torch.Tensor: Overlap values of shape (..., m, n) if is_aligned is | |
False, else shape (..., m). | |
Example: | |
>>> bboxes1 = torch.FloatTensor([ | |
>>> [0, 0, 10, 10], | |
>>> [10, 10, 20, 20], | |
>>> [32, 32, 38, 42], | |
>>> ]) | |
>>> bboxes2 = torch.FloatTensor([ | |
>>> [0, 0, 10, 20], | |
>>> [0, 10, 10, 19], | |
>>> [10, 10, 20, 20], | |
>>> ]) | |
>>> overlaps = bbox_overlaps(bboxes1, bboxes2) | |
>>> assert overlaps.shape == (3, 3) | |
>>> overlaps = bbox_overlaps(bboxes1, bboxes2, is_aligned=True) | |
>>> assert overlaps.shape == (3, ) | |
""" | |
assert mode in ['iou', 'iof', 'giou'], f'Unsupported mode {mode}' | |
assert (bboxes1.size(-1) == 4 or bboxes1.size(0) == 0) | |
assert (bboxes2.size(-1) == 4 or bboxes2.size(0) == 0) | |
if bboxes1.ndim == 1: | |
bboxes1 = bboxes1.unsqueeze(0) | |
if bboxes2.ndim == 1: | |
bboxes2 = bboxes2.unsqueeze(0) | |
assert bboxes1.shape[:-2] == bboxes2.shape[:-2] | |
batch_shape = bboxes1.shape[:-2] | |
rows = bboxes1.size(-2) | |
cols = bboxes2.size(-2) | |
if is_aligned: | |
assert rows == cols | |
if rows * cols == 0: | |
if is_aligned: | |
return bboxes1.new(batch_shape + (rows, )) | |
else: | |
return bboxes1.new(batch_shape + (rows, cols)) | |
area1 = (bboxes1[..., 2] - bboxes1[..., 0]) * ( | |
bboxes1[..., 3] - bboxes1[..., 1]) | |
area2 = (bboxes2[..., 2] - bboxes2[..., 0]) * ( | |
bboxes2[..., 3] - bboxes2[..., 1]) | |
if is_aligned: | |
lt = torch.max(bboxes1[..., :2], bboxes2[..., :2]) | |
rb = torch.min(bboxes1[..., 2:], bboxes2[..., 2:]) | |
wh = fp16_clamp(rb - lt, min_val=0) | |
overlap = wh[..., 0] * wh[..., 1] | |
if mode in ['iou', 'giou']: | |
union = area1 + area2 - overlap | |
else: | |
union = area1 | |
if mode == 'giou': | |
enclosed_lt = torch.min(bboxes1[..., :2], bboxes2[..., :2]) | |
enclosed_rb = torch.max(bboxes1[..., 2:], bboxes2[..., 2:]) | |
else: | |
lt = torch.max(bboxes1[..., :, None, :2], bboxes2[..., None, :, :2]) | |
rb = torch.min(bboxes1[..., :, None, 2:], bboxes2[..., None, :, 2:]) | |
wh = fp16_clamp(rb - lt, min_val=0) | |
overlap = wh[..., 0] * wh[..., 1] | |
if mode in ['iou', 'giou']: | |
union = area1[..., None] + area2[..., None, :] - overlap | |
else: | |
union = area1[..., None] | |
if mode == 'giou': | |
enclosed_lt = torch.min(bboxes1[..., :, None, :2], | |
bboxes2[..., None, :, :2]) | |
enclosed_rb = torch.max(bboxes1[..., :, None, 2:], | |
bboxes2[..., None, :, 2:]) | |
eps_tensor = union.new_tensor([eps]) | |
union = torch.max(union, eps_tensor) | |
ious = overlap / union | |
if mode in ['iou', 'iof']: | |
return ious | |
elif mode == 'giou': | |
enclose_wh = fp16_clamp(enclosed_rb - enclosed_lt, min_val=0) | |
enclose_area = enclose_wh[..., 0] * enclose_wh[..., 1] | |
enclose_area = torch.max(enclose_area, eps_tensor) | |
gious = ious - (enclose_area - union) / enclose_area | |
return gious | |