Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Optional, Tuple, Union | |
import numpy as np | |
def flip_keypoints(keypoints: np.ndarray, | |
keypoints_visible: Optional[np.ndarray], | |
image_size: Tuple[int, int], | |
flip_indices: List[int], | |
direction: str = 'horizontal' | |
) -> Tuple[np.ndarray, Optional[np.ndarray]]: | |
"""Flip keypoints in the given direction. | |
Note: | |
- keypoint number: K | |
- keypoint dimension: D | |
Args: | |
keypoints (np.ndarray): Keypoints in shape (..., K, D) | |
keypoints_visible (np.ndarray, optional): The visibility of keypoints | |
in shape (..., K, 1) or (..., K, 2). Set ``None`` if the keypoint | |
visibility is unavailable | |
image_size (tuple): The image shape in [w, h] | |
flip_indices (List[int]): The indices of each keypoint's symmetric | |
keypoint | |
direction (str): The flip direction. Options are ``'horizontal'``, | |
``'vertical'`` and ``'diagonal'``. Defaults to ``'horizontal'`` | |
Returns: | |
tuple: | |
- keypoints_flipped (np.ndarray): Flipped keypoints in shape | |
(..., K, D) | |
- keypoints_visible_flipped (np.ndarray, optional): Flipped keypoints' | |
visibility in shape (..., K, 1) or (..., K, 2). Return ``None`` if | |
the input ``keypoints_visible`` is ``None`` | |
""" | |
ndim = keypoints.ndim | |
assert keypoints.shape[:-1] == keypoints_visible.shape[:ndim - 1], ( | |
f'Mismatched shapes of keypoints {keypoints.shape} and ' | |
f'keypoints_visible {keypoints_visible.shape}') | |
direction_options = {'horizontal', 'vertical', 'diagonal'} | |
assert direction in direction_options, ( | |
f'Invalid flipping direction "{direction}". ' | |
f'Options are {direction_options}') | |
# swap the symmetric keypoint pairs | |
if direction == 'horizontal' or direction == 'vertical': | |
keypoints = keypoints.take(flip_indices, axis=ndim - 2) | |
if keypoints_visible is not None: | |
keypoints_visible = keypoints_visible.take( | |
flip_indices, axis=ndim - 2) | |
# flip the keypoints | |
w, h = image_size | |
if direction == 'horizontal': | |
keypoints[..., 0] = w - 1 - keypoints[..., 0] | |
elif direction == 'vertical': | |
keypoints[..., 1] = h - 1 - keypoints[..., 1] | |
else: | |
keypoints = [w, h] - keypoints - 1 | |
return keypoints, keypoints_visible | |
def flip_keypoints_custom_center(keypoints: np.ndarray, | |
keypoints_visible: np.ndarray, | |
flip_indices: List[int], | |
center_mode: str = 'static', | |
center_x: float = 0.5, | |
center_index: Union[int, List] = 0): | |
"""Flip human joints horizontally. | |
Note: | |
- num_keypoint: K | |
- dimension: D | |
Args: | |
keypoints (np.ndarray([..., K, D])): Coordinates of keypoints. | |
keypoints_visible (np.ndarray([..., K])): Visibility item of keypoints. | |
flip_indices (list[int]): The indices to flip the keypoints. | |
center_mode (str): The mode to set the center location on the x-axis | |
to flip around. Options are: | |
- static: use a static x value (see center_x also) | |
- root: use a root joint (see center_index also) | |
Defaults: ``'static'``. | |
center_x (float): Set the x-axis location of the flip center. Only used | |
when ``center_mode`` is ``'static'``. Defaults: 0.5. | |
center_index (Union[int, List]): Set the index of the root joint, whose | |
x location will be used as the flip center. Only used when | |
``center_mode`` is ``'root'``. Defaults: 0. | |
Returns: | |
np.ndarray([..., K, C]): Flipped joints. | |
""" | |
assert keypoints.ndim >= 2, f'Invalid pose shape {keypoints.shape}' | |
allowed_center_mode = {'static', 'root'} | |
assert center_mode in allowed_center_mode, 'Get invalid center_mode ' \ | |
f'{center_mode}, allowed choices are {allowed_center_mode}' | |
if center_mode == 'static': | |
x_c = center_x | |
elif center_mode == 'root': | |
center_index = [center_index] if isinstance(center_index, int) else \ | |
center_index | |
assert keypoints.shape[-2] > max(center_index) | |
x_c = keypoints[..., center_index, 0].mean(axis=-1) | |
keypoints_flipped = keypoints.copy() | |
keypoints_visible_flipped = keypoints_visible.copy() | |
# Swap left-right parts | |
for left, right in enumerate(flip_indices): | |
keypoints_flipped[..., left, :] = keypoints[..., right, :] | |
keypoints_visible_flipped[..., left] = keypoints_visible[..., right] | |
# Flip horizontally | |
keypoints_flipped[..., 0] = x_c * 2 - keypoints_flipped[..., 0] | |
return keypoints_flipped, keypoints_visible_flipped | |
def keypoint_clip_border(keypoints: np.ndarray, keypoints_visible: np.ndarray, | |
shape: Tuple[int, | |
int]) -> Tuple[np.ndarray, np.ndarray]: | |
"""Set the visibility values for keypoints outside the image border. | |
Args: | |
keypoints (np.ndarray): Input keypoints coordinates. | |
keypoints_visible (np.ndarray): Visibility values of keypoints. | |
shape (Tuple[int, int]): Shape of the image to which keypoints are | |
being clipped in the format of (w, h). | |
Note: | |
This function sets the visibility values of keypoints that fall outside | |
the specified frame border to zero (0.0). | |
""" | |
width, height = shape[:2] | |
# Create a mask for keypoints outside the frame | |
outside_mask = ((keypoints[..., 0] > width) | (keypoints[..., 0] < 0) | | |
(keypoints[..., 1] > height) | (keypoints[..., 1] < 0)) | |
# Update visibility values for keypoints outside the frame | |
if keypoints_visible.ndim == 2: | |
keypoints_visible[outside_mask] = 0.0 | |
elif keypoints_visible.ndim == 3: | |
keypoints_visible[outside_mask, 0] = 0.0 | |
return keypoints, keypoints_visible | |