# dataset settings dataset_type = 'V3DetDataset' data_root = 'data/V3Det/' backend_args = None train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True), dict( type='RandomChoiceResize', scales=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict(type='PackDetInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1333, 800), keep_ratio=True), # If you don't have a gt annotation, delete the pipeline dict(type='LoadAnnotations', with_bbox=True), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), batch_sampler=dict(type='AspectRatioBatchSampler'), dataset=dict( type='ClassBalancedDataset', oversample_thr=1e-3, dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/v3det_2023_v1_train.json', data_prefix=dict(img=''), filter_cfg=dict(filter_empty_gt=True, min_size=4), pipeline=train_pipeline, backend_args=backend_args))) val_dataloader = dict( batch_size=1, num_workers=2, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/v3det_2023_v1_val.json', data_prefix=dict(img=''), test_mode=True, pipeline=test_pipeline, backend_args=backend_args)) test_dataloader = val_dataloader val_evaluator = dict( type='CocoMetric', ann_file=data_root + 'annotations/v3det_2023_v1_val.json', metric='bbox', format_only=False, backend_args=backend_args, use_mp_eval=True, proposal_nums=[300]) test_evaluator = val_evaluator