# Copyright (c) OpenMMLab. All rights reserved. import warnings from typing import Optional, Tuple, Union import torch from torch import Tensor from torch.nn import functional as F from mmpose.registry import MODELS def resize(input: torch.Tensor, size: Optional[Union[Tuple[int, int], torch.Size]] = None, scale_factor: Optional[float] = None, mode: str = 'nearest', align_corners: Optional[bool] = None, warning: bool = True) -> torch.Tensor: """Resize a given input tensor using specified size or scale_factor. Args: input (torch.Tensor): The input tensor to be resized. size (Optional[Union[Tuple[int, int], torch.Size]]): The desired output size. Defaults to None. scale_factor (Optional[float]): The scaling factor for resizing. Defaults to None. mode (str): The interpolation mode. Defaults to 'nearest'. align_corners (Optional[bool]): Determines whether to align the corners when using certain interpolation modes. Defaults to None. warning (bool): Whether to display a warning when the input and output sizes are not ideal for alignment. Defaults to True. Returns: torch.Tensor: The resized tensor. """ # Check if a warning should be displayed regarding input and output sizes if warning: if size is not None and align_corners: input_h, input_w = tuple(int(x) for x in input.shape[2:]) output_h, output_w = tuple(int(x) for x in size) if output_h > input_h or output_w > output_h: if ((output_h > 1 and output_w > 1 and input_h > 1 and input_w > 1) and (output_h - 1) % (input_h - 1) and (output_w - 1) % (input_w - 1)): warnings.warn( f'When align_corners={align_corners}, ' 'the output would be more aligned if ' f'input size {(input_h, input_w)} is `x+1` and ' f'out size {(output_h, output_w)} is `nx+1`') # Convert torch.Size to tuple if necessary if isinstance(size, torch.Size): size = tuple(int(x) for x in size) # Perform the resizing operation return F.interpolate(input, size, scale_factor, mode, align_corners) @MODELS.register_module() class FrozenBatchNorm2d(torch.nn.Module): """BatchNorm2d where the batch statistics and the affine parameters are fixed. Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than torchvision.models.resnet[18,34,50,101] produce nans. """ def __init__(self, n, eps: int = 1e-5): super(FrozenBatchNorm2d, self).__init__() self.register_buffer('weight', torch.ones(n)) self.register_buffer('bias', torch.zeros(n)) self.register_buffer('running_mean', torch.zeros(n)) self.register_buffer('running_var', torch.ones(n)) self.eps = eps def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): num_batches_tracked_key = prefix + 'num_batches_tracked' if num_batches_tracked_key in state_dict: del state_dict[num_batches_tracked_key] super(FrozenBatchNorm2d, self)._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) def forward(self, x): w = self.weight.reshape(1, -1, 1, 1) b = self.bias.reshape(1, -1, 1, 1) rv = self.running_var.reshape(1, -1, 1, 1) rm = self.running_mean.reshape(1, -1, 1, 1) scale = w * (rv + self.eps).rsqrt() bias = b - rm * scale return x * scale + bias def inverse_sigmoid(x: Tensor, eps: float = 1e-3) -> Tensor: """Inverse function of sigmoid. Args: x (Tensor): The tensor to do the inverse. eps (float): EPS avoid numerical overflow. Defaults 1e-5. Returns: Tensor: The x has passed the inverse function of sigmoid, has the same shape with input. """ x = x.clamp(min=0, max=1) x1 = x.clamp(min=eps) x2 = (1 - x).clamp(min=eps) return torch.log(x1 / x2)