File size: 4,555 Bytes
a289868
 
 
 
 
 
 
 
 
518d0c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
---
title: README
emoji: πŸš€
colorFrom: yellow
colorTo: green
sdk: static
pinned: false
---

[**pyannote.audio**](https://github.com/pyannote/pyannote-audio) is a state-of-the-art open-source toolkit for speaker diarization. 

Out of the box, <img src="https://avatars.githubusercontent.com/u/7559051" width="20" style="vertical-align:text-bottom;" /> `pyannote.audio` speaker diarization [pipeline v4.0](https://hf.co/pyannote/speaker-diarization-4.0) is expected to be much better than v3.1.

<img src="https://avatars.githubusercontent.com/u/162698670" width="20" style="vertical-align:text-bottom;" /> `pyannoteAI` premium models are even better (and also 2x faster). <img src="https://avatars.githubusercontent.com/u/162698670" width="20" style="vertical-align:text-bottom;" /> `labs` model is currently in private beta.

| Benchmark (last updated in 2025-08) | <a href="https://hf.co/pyannote/speaker-diarization-3.1"><img src="https://avatars.githubusercontent.com/u/7559051" width="32" /><br/>v3.1</a> | <a href="https://hf.co/pyannote/speaker-diarization-4.0"><img src="https://avatars.githubusercontent.com/u/7559051" width="32" /><br/> v4.0</a> | <a href="https://docs.pyannote.ai"><img src="https://avatars.githubusercontent.com/u/162698670" width="32" /><br/>API</a> | <a href="https://docs.pyannote.ai"><img src="https://avatars.githubusercontent.com/u/162698670" width="32" /><br/>labs</a> | 
| --------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------ | -------------------------------------------------| ------------------------------------------------ | --- |
| [AISHELL-4](https://arxiv.org/abs/2104.03603)                                                                               | 12.2 | 11.7 | 11.8 | 11.4 | 
| [AliMeeting](https://www.openslr.org/119/) (channel 1)                                                                      | 24.5 | 20.3 | 16.3 | 15.2 | 
| [AMI](https://groups.inf.ed.ac.uk/ami/corpus/) (IHM)                                                                        | 18.8 | 17.0 | 13.2 | 12.9 |
| [AMI](https://groups.inf.ed.ac.uk/ami/corpus/) (SDM)                                                                        | 22.7 | 19.9 | 15.8 | 15.6 |
| [AVA-AVD](https://arxiv.org/abs/2111.14448)                                                                                 | 49.7 | 44.6 | 40.7 | 37.1 |
| [CALLHOME](https://catalog.ldc.upenn.edu/LDC2001S97) ([part 2](https://github.com/BUTSpeechFIT/CALLHOME_sublists/issues/1)) | 28.5 | 26.7 | 17.6 | 16.6 |
| [DIHARD 3](https://catalog.ldc.upenn.edu/LDC2022S14) ([full](https://arxiv.org/abs/2012.01477))                             | 21.4 | 20.2 | 15.7 | 14.7 |
| [Ego4D](https://arxiv.org/abs/2110.07058) (dev.)                                                                            | 51.2 | 46.8 | 44.7 | 39.0 |
| [MSDWild](https://github.com/X-LANCE/MSDWILD)                                                                               | 25.4 | 22.8 | 17.9 | 17.3 |
| [RAMC](https://www.openslr.org/123/)                                                                                        | 22.2 | 20.8 | 10.6 | 10.5 |
| [REPERE](https://www.islrn.org/resources/360-758-359-485-0/) (phase2)                                                       | 7.9  |  8.9 |  7.3 |  7.4 |
| [VoxConverse](https://github.com/joonson/voxconverse) (v0.3)                                                                | 11.2 | 11.2 |  9.0 |  8.5 |

__[Diarization error rate](http://pyannote.github.io/pyannote-metrics/reference.html#diarization) (in %, the lower, the better)__

| Benchmark (last updated in 2025-08) | <img src="https://avatars.githubusercontent.com/u/7559051" width="32" /> | <a href="https://docs.pyannote.ai"><img src="https://avatars.githubusercontent.com/u/162698670" width="32" /></a>  | Speed up
| -------------- | ----------- | ----------- | ------ |
| [AMI](https://groups.inf.ed.ac.uk/ami/corpus/) (IHM), ~1h files                                                     | 31s per hour of audio | 14s per hour of audio | 2.2x faster
| [DIHARD 3](https://catalog.ldc.upenn.edu/LDC2022S14) ([full](https://arxiv.org/abs/2012.01477)), ~5min files        | 37s per hour of audio | 14s per hour of audio | 2.6x faster

__Processing speed on a NVIDIA H100 80GB HBM3__

Training was made possible thanks to [GENCI](https://www.genci.fr/) on the [**Jean Zay**](http://www.idris.fr/eng/jean-zay/) supercomputer.