File size: 898 Bytes
84d3f1d
5703a24
 
 
 
 
 
 
 
 
84d3f1d
 
 
0a24d61
84d3f1d
 
 
 
 
0a24d61
 
84d3f1d
 
 
 
 
0a24d61
 
84d3f1d
 
 
 
 
cb207f5
5703a24
84d3f1d
 
 
 
 
5703a24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
model_name: "cnn_vad"

# spec
sample_rate: 8000
nfft: 512
win_size: 240
hop_size: 80
win_type: hann

# model
conv2d_block_param_list:
  - batch_norm: true
    in_channels: 1
    out_channels: 8
    kernel_size: 3
    padding: "same"
    dilation: 3
    activation: relu
    dropout: 0.1
  - in_channels: 8
    out_channels: 8
    kernel_size: 5
    padding: "same"
    dilation: 3
    activation: relu
    dropout: 0.1
  - in_channels: 8
    out_channels: 8
    kernel_size: 3
    padding: "same"
    dilation: 2
    activation: relu
    dropout: 0.1
encoder_output_size: 2056

# lsnr
n_frame: 3
min_local_snr_db: -15
max_local_snr_db: 30
norm_tau: 1.

# data
min_snr_db: -10
max_snr_db: 20

# train
lr: 0.001
lr_scheduler: "CosineAnnealingLR"
lr_scheduler_kwargs:
  T_max: 250000
  eta_min: 0.0001

max_epochs: 100
clip_grad_norm: 10.0
seed: 1234

num_workers: 4
batch_size: 128
eval_steps: 25000