File size: 4,650 Bytes
19f8ea7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
import json
import os
import re
from pathlib import Path
import sys

pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))

from google import genai
from google.genai import types

from project_settings import environment, project_path


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--google_application_credentials",
        default=(project_path / "dotenv/potent-veld-462405-t3-8091a29b2894.json").as_posix(),
        type=str
    )
    parser.add_argument(
        "--model_name",
        default="gemini-2.5-pro",
        type=str
    )
    parser.add_argument(
        "--speech_audio_dir",
        default=r"D:\Users\tianx\HuggingDatasets\nx_noise\data\speech\nx-speech\en-SG\2025-06-17",
        type=str
    )
    parser.add_argument(
        "--output_file",
        # default=r"D:\Users\tianx\HuggingDatasets\nx_noise\data\noise\nx-noise\en-SG\2025-06-17\vad.jsonl",
        default=r"vad.jsonl",
        type=str
    )
    parser.add_argument(
        "--gemini_api_key",
        default=environment.get("GEMINI_API_KEY", dtype=str),
        type=str
    )
    args = parser.parse_args()
    return args


def main():
    args = get_args()

    speech_audio_dir = Path(args.speech_audio_dir)
    output_file = Path(args.output_file)

    os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = args.google_application_credentials
    os.environ["gemini_api_key"] = args.gemini_api_key


    developer_client = genai.Client(
        api_key=args.gemini_api_key,
    )
    client = genai.Client(
        vertexai=True,
        project="potent-veld-462405-t3",
        location="global",
    )
    generate_content_config = types.GenerateContentConfig(
        temperature=1,
        top_p=0.95,
        max_output_tokens=8192,
        response_modalities=["TEXT"],
    )

    # finished
    finished_set = set()
    if output_file.exists():
        with open(output_file.as_posix(), "r", encoding="utf-8") as f:
            for row in f:
                row = json.loads(row)
                name = row["name"]
                finished_set.add(name)
    print(f"finished count: {len(finished_set)}")

    with open(output_file.as_posix(), "a+", encoding="utf-8") as f:

        for filename in speech_audio_dir.glob("**/*.wav"):
            name = filename.name
            if name in finished_set:
                continue
            finished_set.add(name)

            # upload
            audio_file = developer_client.files.upload(
                file=filename.as_posix(),
                config=None
            )
            print(f"upload file: {audio_file.name}")

            prompt = f"""
    给我这段音频中的语音分段的开始和结束时间,单位为秒,精确到毫秒,并输出JSON格式,
    例如:
    ```json
    [[0.254, 1.214], [2.200, 3.100]],
    ```
    如果没有语音段则输出:
    ```json
    []
    ```
    """.strip()

            try:
                contents = [
                    types.Content(
                        role="user",
                        parts=[
                            types.Part(text=prompt),
                            types.Part.from_uri(
                                file_uri=audio_file.uri,
                                mime_type=audio_file.mime_type,
                            )
                        ]
                    )
                ]
                response: types.GenerateContentResponse = developer_client.models.generate_content(
                    model=args.model_name,
                    contents=contents,
                    config=generate_content_config,
                )
                answer = response.candidates[0].content.parts[0].text
                print(answer)
            finally:
                # delete
                print(f"delete file: {audio_file.name}")
                developer_client.files.delete(name=audio_file.name)

            pattern = "```json(.+?)```"
            match = re.search(pattern=pattern, string=answer, flags=re.DOTALL | re.IGNORECASE)
            if match is None:
                raise AssertionError(f"answer: {answer}")
            vad_segments = match.group(1)
            vad_segments = json.loads(vad_segments)
            row = {
                "name": name,
                "filename": filename.as_posix(),
                "vad_segments": vad_segments
            }
            row = json.dumps(row, ensure_ascii=False)

            f.write(f"{row}\n")
            exit(0)

    return


if __name__ == "__main__":
    main()