File size: 4,554 Bytes
19f8ea7
 
 
 
6efeebe
67d2438
 
35035c8
 
48776cd
19f8ea7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48776cd
 
19f8ea7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35035c8
19f8ea7
35035c8
 
19f8ea7
 
 
 
 
 
 
48776cd
 
19f8ea7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e90b328
19f8ea7
e90b328
19f8ea7
e90b328
19f8ea7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#!/usr/bin/env bash

: <<'END'

bash run.sh --stage 3 --stop_stage 5 --system_version centos \
--file_folder_name fsmn-vad-by-webrtcvad-nx2-dns3 \
--final_model_name fsmn-vad-by-webrtcvad-nx2-dns3 \
--noise_patterns "/data/tianxing/HuggingDatasets/nx_noise/data/noise/**/*.wav" \
--speech_patterns "/data/tianxing/HuggingDatasets/nx_noise/data/speech/dns3-speech/**/*.wav \
/data/tianxing/HuggingDatasets/nx_noise/data/speech/nx-speech2/**/*.wav"


END


# params
system_version="windows";
verbose=true;
stage=0 # start from 0 if you need to start from data preparation
stop_stage=9

work_dir="$(pwd)"
file_folder_name=file_folder_name
final_model_name=final_model_name
config_file="yaml/config.yaml"
limit=10

noise_patterns=/data/tianxing/HuggingDatasets/nx_noise/data/noise/**/*.wav
speech_patterns=/data/tianxing/HuggingDatasets/nx_noise/data/speech/**/*.wav

max_count=-1

nohup_name=nohup.out

# model params
batch_size=64
max_epochs=200
save_top_k=10
patience=5


# parse options
while true; do
  [ -z "${1:-}" ] && break;  # break if there are no arguments
  case "$1" in
    --*) name=$(echo "$1" | sed s/^--// | sed s/-/_/g);
      eval '[ -z "${'"$name"'+xxx}" ]' && echo "$0: invalid option $1" 1>&2 && exit 1;
      old_value="(eval echo \\$$name)";
      if [ "${old_value}" == "true" ] || [ "${old_value}" == "false" ]; then
        was_bool=true;
      else
        was_bool=false;
      fi

      # Set the variable to the right value-- the escaped quotes make it work if
      # the option had spaces, like --cmd "queue.pl -sync y"
      eval "${name}=\"$2\"";

      # Check that Boolean-valued arguments are really Boolean.
      if $was_bool && [[ "$2" != "true" && "$2" != "false" ]]; then
        echo "$0: expected \"true\" or \"false\": $1 $2" 1>&2
        exit 1;
      fi
      shift 2;
      ;;

    *) break;
  esac
done

file_dir="${work_dir}/${file_folder_name}"
final_model_dir="${work_dir}/../../trained_models/${final_model_name}";
evaluation_audio_dir="${file_dir}/evaluation_audio"

train_dataset="${file_dir}/train.jsonl"
valid_dataset="${file_dir}/valid.jsonl"

train_vad_dataset="${file_dir}/train-vad.jsonl"
valid_vad_dataset="${file_dir}/valid-vad.jsonl"

$verbose && echo "system_version: ${system_version}"
$verbose && echo "file_folder_name: ${file_folder_name}"

if [ $system_version == "windows" ]; then
  alias python3='D:/Users/tianx/PycharmProjects/virtualenv/cc_vad/Scripts/python.exe'
elif [ $system_version == "centos" ] || [ $system_version == "ubuntu" ]; then
  #source /data/local/bin/cc_vad/bin/activate
  alias python3='/data/local/bin/cc_vad/bin/python3'
fi


if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
  $verbose && echo "stage 1: prepare data"
  cd "${work_dir}" || exit 1
  python3 step_1_prepare_data.py \
  --noise_patterns "${noise_patterns}" \
  --speech_patterns "${speech_patterns}" \
  --train_dataset "${train_dataset}" \
  --valid_dataset "${valid_dataset}" \
  --max_count "${max_count}" \

fi


if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
  $verbose && echo "stage 2: make vad segments"
  cd "${work_dir}" || exit 1
  python3 step_2_make_vad_segments.py \
  --train_dataset "${train_dataset}" \
  --valid_dataset "${valid_dataset}" \
  --train_vad_dataset "${train_vad_dataset}" \
  --valid_vad_dataset "${valid_vad_dataset}" \

fi


if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
  $verbose && echo "stage 3: train model"
  cd "${work_dir}" || exit 1
  python3 step_4_train_model.py \
  --train_dataset "${train_vad_dataset}" \
  --valid_dataset "${valid_vad_dataset}" \
  --serialization_dir "${file_dir}" \
  --config_file "${config_file}" \

fi


if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
  $verbose && echo "stage 4: export model"
  cd "${work_dir}" || exit 1
  python3 step_5_export_model.py \
  --model_dir "${file_dir}/best" \
  --output_dir "${file_dir}/best" \

fi


if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
  $verbose && echo "stage 5: collect files"
  cd "${work_dir}" || exit 1

  mkdir -p ${final_model_dir}

  cp "${file_dir}/best"/* "${final_model_dir}"

  cd "${final_model_dir}/.." || exit 1;

  if [ -e "${final_model_name}.zip" ]; then
    rm -rf "${final_model_name}_backup.zip"
    mv "${final_model_name}.zip" "${final_model_name}_backup.zip"
  fi

  zip -r "${final_model_name}.zip" "${final_model_name}"
  rm -rf "${final_model_name}"

fi


if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
  $verbose && echo "stage 6: clear file_dir"
  cd "${work_dir}" || exit 1

  rm -rf "${file_dir}";

fi