File size: 12,101 Bytes
9829721 fbd43a1 9829721 e90b328 9829721 e90b328 fbd43a1 5dd7349 e90b328 9829721 5dd7349 e90b328 fbd43a1 5dd7349 9829721 fbd43a1 9829721 e90b328 fbd43a1 00e4381 9829721 e90b328 9829721 5dd7349 9829721 fbd43a1 e90b328 fbd43a1 00e4381 bebc2b8 00e4381 fbd43a1 5dd7349 bebc2b8 fbd43a1 e90b328 fbd43a1 00e4381 bebc2b8 00e4381 bebc2b8 00e4381 fbd43a1 bebc2b8 fbd43a1 00e4381 fbd43a1 9829721 e90b328 fbd43a1 e90b328 9829721 fbd43a1 00e4381 bebc2b8 00e4381 fbd43a1 00e4381 fbd43a1 00e4381 bebc2b8 00e4381 e90b328 00e4381 e90b328 fbd43a1 9829721 bebc2b8 9829721 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
from functools import lru_cache
import json
import logging
from pathlib import Path
import platform
import shutil
import tempfile
import time
from typing import Dict, Tuple
import uuid
import zipfile
import gradio as gr
import librosa
from huggingface_hub import snapshot_download
import matplotlib.pyplot as plt
import numpy as np
from scipy.io import wavfile
import log
from project_settings import environment, project_path, log_directory, time_zone_info
from toolbox.os.command import Command
from toolbox.torchaudio.models.vad.fsmn_vad.inference_fsmn_vad_onnx import InferenceFSMNVadOnnx
from toolbox.torchaudio.models.vad.silero_vad.inference_silero_vad import InferenceSileroVad
from toolbox.torchaudio.utils.visualization import process_speech_probs
from toolbox.vad.utils import PostProcess
log.setup_size_rotating(log_directory=log_directory, tz_info=time_zone_info)
logger = logging.getLogger("main")
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--examples_dir",
# default=(project_path / "data").as_posix(),
default=(project_path / "data/examples").as_posix(),
type=str
)
parser.add_argument(
"--models_repo_id",
default="qgyd2021/cc_vad",
type=str
)
parser.add_argument(
"--trained_model_dir",
default=(project_path / "trained_models").as_posix(),
type=str
)
parser.add_argument(
"--hf_token",
default=environment.get("hf_token"),
type=str,
)
parser.add_argument(
"--server_port",
default=environment.get("server_port", 7860),
type=int
)
args = parser.parse_args()
return args
def save_input_audio(sample_rate: int, signal: np.ndarray) -> str:
if signal.dtype != np.int16:
raise AssertionError(f"only support dtype np.int16, however: {signal.dtype}")
temp_audio_dir = Path(tempfile.gettempdir()) / "input_audio"
temp_audio_dir.mkdir(parents=True, exist_ok=True)
filename = temp_audio_dir / f"{uuid.uuid4()}.wav"
filename = filename.as_posix()
wavfile.write(
filename,
sample_rate, signal
)
return filename
def convert_sample_rate(signal: np.ndarray, sample_rate: int, target_sample_rate: int):
filename = save_input_audio(sample_rate, signal)
signal, _ = librosa.load(filename, sr=target_sample_rate)
signal = np.array(signal * (1 << 15), dtype=np.int16)
return signal
def shell(cmd: str):
return Command.popen(cmd)
def get_infer_cls_by_model_name(model_name: str):
if model_name.__contains__("fsmn"):
infer_cls = InferenceFSMNVadOnnx
elif model_name.__contains__("silero"):
infer_cls = InferenceSileroVad
else:
raise AssertionError
return infer_cls
vad_engines: Dict[str, dict] = None
@lru_cache(maxsize=1)
def load_vad_model(infer_cls, **kwargs):
infer_engine = infer_cls(**kwargs)
return infer_engine
def generate_image(signal: np.ndarray, speech_probs: np.ndarray, sample_rate: int = 8000, title: str = ""):
duration = np.arange(0, len(signal)) / sample_rate
plt.figure(figsize=(12, 5))
plt.plot(duration, signal, color='b')
plt.plot(duration, speech_probs, color='gray')
plt.title(title)
temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
plt.savefig(temp_file.name, bbox_inches="tight")
plt.close()
return temp_file.name
def when_click_vad_button(audio_file_t = None, audio_microphone_t = None,
start_ring_rate: float = 0.5, end_ring_rate: float = 0.3,
ring_max_length: int = 10,
min_silence_length: int = 2,
max_speech_length: int = 10000, min_speech_length: int = 10,
engine: str = None,
):
if audio_file_t is None and audio_microphone_t is None:
raise gr.Error(f"audio file and microphone is null.")
if audio_file_t is not None and audio_microphone_t is not None:
gr.Warning(f"both audio file and microphone file is provided, audio file taking priority.")
audio_t: Tuple = audio_file_t or audio_microphone_t
sample_rate, signal = audio_t
if sample_rate != 8000:
signal = convert_sample_rate(signal, sample_rate, 8000)
sample_rate = 8000
audio_duration = signal.shape[-1] // sample_rate
audio = np.array(signal / (1 << 15), dtype=np.float32)
infer_engine_param = vad_engines.get(engine)
if infer_engine_param is None:
raise gr.Error(f"invalid denoise engine: {engine}.")
try:
infer_cls = infer_engine_param["infer_cls"]
kwargs = infer_engine_param["kwargs"]
infer_engine = load_vad_model(infer_cls=infer_cls, **kwargs)
begin = time.time()
vad_info = infer_engine.infer(audio)
time_cost = time.time() - begin
probs = vad_info["probs"]
lsnr = vad_info["lsnr"]
# lsnr = lsnr / np.max(np.abs(lsnr))
lsnr = lsnr / 30
frame_step = infer_engine.config.hop_size
# post process
vad_post_process = PostProcess(
start_ring_rate=start_ring_rate,
end_ring_rate=end_ring_rate,
ring_max_length=ring_max_length,
min_silence_length=min_silence_length,
max_speech_length=max_speech_length,
min_speech_length=min_speech_length
)
vad_segments = vad_post_process.get_vad_segments(probs)
vad_flags = vad_post_process.get_vad_flags(probs, vad_segments)
# vad_image
vad_ = process_speech_probs(audio, vad_flags, frame_step)
vad_image = generate_image(audio, vad_)
# probs_image
probs_ = process_speech_probs(audio, probs, frame_step)
probs_image = generate_image(audio, probs_)
# lsnr_image
lsnr_ = process_speech_probs(audio, lsnr, frame_step)
lsnr_image = generate_image(audio, lsnr_)
# vad segment
vad_segments = [
[
v[0] * frame_step / sample_rate,
v[1] * frame_step / sample_rate
] for v in vad_segments
]
# message
rtf = time_cost / audio_duration
info = {
"vad_segments": vad_segments,
"time_cost": round(time_cost, 4),
"duration": round(audio_duration, 4),
"rtf": round(rtf, 4)
}
message = json.dumps(info, ensure_ascii=False, indent=4)
except Exception as e:
raise gr.Error(f"vad failed, error type: {type(e)}, error text: {str(e)}.")
return vad_image, probs_image, lsnr_image, message
def main():
args = get_args()
examples_dir = Path(args.examples_dir)
trained_model_dir = Path(args.trained_model_dir)
# download models
if not trained_model_dir.exists():
trained_model_dir.mkdir(parents=True, exist_ok=True)
_ = snapshot_download(
repo_id=args.models_repo_id,
local_dir=trained_model_dir.as_posix(),
token=args.hf_token,
)
# engines
global vad_engines
vad_engines = {
filename.stem: {
"infer_cls": get_infer_cls_by_model_name(filename.stem),
"kwargs": {
"pretrained_model_path_or_zip_file": filename.as_posix()
}
}
for filename in (project_path / "trained_models").glob("*.zip")
if filename.name not in (
"cnn-vad-by-webrtcvad-nx-dns3.zip",
"fsmn-vad-by-webrtcvad-nx-dns3.zip",
"examples.zip",
"sound-2-ch32.zip",
"sound-3-ch32.zip",
"sound-4-ch32.zip",
"sound-8-ch32.zip",
)
}
# choices
vad_engine_choices = list(vad_engines.keys())
# examples
if not examples_dir.exists():
example_zip_file = trained_model_dir / "examples.zip"
with zipfile.ZipFile(example_zip_file.as_posix(), "r") as f_zip:
out_root = examples_dir
if out_root.exists():
shutil.rmtree(out_root.as_posix())
out_root.mkdir(parents=True, exist_ok=True)
f_zip.extractall(path=out_root)
# examples
examples = list()
for filename in examples_dir.glob("**/*.wav"):
examples.append([
filename.as_posix(),
None,
vad_engine_choices[0],
])
# ui
with gr.Blocks() as blocks:
gr.Markdown(value="vad.")
with gr.Tabs():
with gr.TabItem("vad"):
with gr.Row():
with gr.Column(variant="panel", scale=5):
with gr.Tabs():
with gr.TabItem("file"):
vad_audio_file = gr.Audio(label="audio")
with gr.TabItem("microphone"):
vad_audio_microphone = gr.Audio(sources="microphone", label="audio")
with gr.Row():
vad_start_ring_rate = gr.Slider(minimum=0, maximum=1, value=0.5, step=0.1, label="start_ring_rate")
vad_end_ring_rate = gr.Slider(minimum=0, maximum=1, value=0.3, step=0.1, label="end_ring_rate")
with gr.Row():
vad_ring_max_length = gr.Number(value=10, label="ring_max_length (*10ms)")
vad_min_silence_length = gr.Number(value=6, label="min_silence_length (*10ms)")
with gr.Row():
vad_max_speech_length = gr.Number(value=100000, label="max_speech_length (*10ms)")
vad_min_speech_length = gr.Number(value=15, label="min_speech_length (*10ms)")
vad_engine = gr.Dropdown(choices=vad_engine_choices, value=vad_engine_choices[0], label="engine")
vad_button = gr.Button(variant="primary")
with gr.Column(variant="panel", scale=5):
vad_vad_image = gr.Image(label="vad")
vad_prob_image = gr.Image(label="prob")
vad_lsnr_image = gr.Image(label="lsnr")
vad_message = gr.Textbox(lines=1, max_lines=20, label="message")
vad_button.click(
when_click_vad_button,
inputs=[
vad_audio_file, vad_audio_microphone,
vad_start_ring_rate, vad_end_ring_rate,
vad_ring_max_length,
vad_min_silence_length,
vad_max_speech_length, vad_min_speech_length,
vad_engine,
],
outputs=[vad_vad_image, vad_prob_image, vad_lsnr_image, vad_message],
)
gr.Examples(
examples=examples,
inputs=[vad_audio_file, vad_audio_microphone, vad_engine],
outputs=[vad_vad_image, vad_prob_image, vad_lsnr_image, vad_message],
fn=when_click_vad_button,
# cache_examples=True,
# cache_mode="lazy",
)
with gr.TabItem("shell"):
shell_text = gr.Textbox(label="cmd")
shell_button = gr.Button("run")
shell_output = gr.Textbox(label="output")
shell_button.click(
shell,
inputs=[shell_text,],
outputs=[shell_output],
)
# http://127.0.0.1:7866/
# http://10.75.27.247:7866/
blocks.queue().launch(
# share=True,
share=False if platform.system() == "Windows" else False,
server_name="127.0.0.1" if platform.system() == "Windows" else "0.0.0.0",
server_port=args.server_port,
show_error=True
)
return
if __name__ == "__main__":
main()
|