File size: 1,025 Bytes
5e1cd25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#!/usr/bin/python3
# -*- coding: utf-8 -*-
from typing import List, Tuple

import torch
import torch.nn as nn

from toolbox.torchaudio.losses.vad_loss.base_vad_loss import BaseVadLoss


class BCELoss(BaseVadLoss):
    """
    Binary Cross-Entropy Loss, BCE Loss
    """
    def __init__(self,
                 reduction: str = "mean",
                 ):
        super(BCELoss, self).__init__()
        self.reduction = reduction

        self.bce_loss_fn = nn.BCELoss(reduction=reduction)

    def forward(self, inputs: torch.Tensor, targets: torch.Tensor):
        """
        :param inputs: torch.Tensor, shape: [b, t, 1]. vad prob, after sigmoid activation.
        :param targets: shape as `inputs`.
        :return:
        """
        loss = self.bce_loss_fn.forward(inputs, targets)
        return loss


def main():
    inputs = torch.zeros(size=(1, 198, 1), dtype=torch.float32)

    loss_fn = BCELoss()

    loss = loss_fn.forward(inputs, inputs)
    print(loss)
    return


if __name__ == "__main__":
    main()