File size: 1,556 Bytes
9829721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import torch


class VadAccuracy(object):
    def __init__(self, threshold: float = 0.5) -> None:
        self.threshold = threshold

        self.correct_count = 0.
        self.total_count = 0.

    def __call__(self,
                 predictions: torch.Tensor,
                 gold_labels: torch.Tensor,
                 ):
        """
        :param predictions: torch.Tensor, shape: [b, t, 1]. vad prob, after sigmoid activation.
        :param gold_labels: torch.Tensor, shape: [b, t, 1].
        :return:
        """
        predictions = (predictions > self.threshold).float()
        correct = predictions.eq(gold_labels).float()
        self.correct_count += correct.sum()
        self.total_count += gold_labels.numel()

    def get_metric(self, reset: bool = False):
        """
        Returns
        -------
        The accumulated accuracy.
        """
        if self.total_count > 1e-12:
            accuracy = float(self.correct_count) / float(self.total_count)
        else:
            accuracy = 0.0
        if reset:
            self.reset()
        return {'accuracy': accuracy}

    def reset(self):
        self.correct_count = 0.0
        self.total_count = 0.0


def main():
    inputs = torch.zeros(size=(1, 198, 1), dtype=torch.float32)
    targets = torch.zeros(size=(1, 198, 1), dtype=torch.float32)

    metric_fn = VadAccuracy()

    metric_fn.__call__(inputs, targets)

    metrics = metric_fn.get_metric()
    print(metrics)
    return


if __name__ == "__main__":
    main()