llm_eval_system / llm_eval_script /gemini_google_chat.py
HoneyTian's picture
update
1e55fa2
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
from datetime import datetime
import json
import os
from pathlib import Path
import sys
import time
import tempfile
from zoneinfo import ZoneInfo # Python 3.9+ 自带,无需安装
pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../"))
from google import genai
from google.genai import types
from project_settings import environment, project_path
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
# default="gemini-2.5-pro", # The model does not support setting thinking_budget to 0.
# default="gemini-2.5-flash",
# default="gemini-2.5-flash-lite-preview-06-17",
# default="llama-4-maverick-17b-128e-instruct-maas",
default="llama-4-scout-17b-16e-instruct-maas",
type=str
)
parser.add_argument(
"--eval_dataset_name",
# default="agent-lingoace-zh-80-chat.jsonl",
default="agent-bingoplus-ph-200-chat.jsonl",
type=str
)
parser.add_argument(
"--eval_dataset_dir",
default=(project_path / "data/dataset").as_posix(),
type=str
)
parser.add_argument(
"--eval_data_dir",
default=(project_path / "data/eval_data").as_posix(),
type=str
)
parser.add_argument(
"--client",
default="shenzhen_sase",
type=str
)
parser.add_argument(
"--service",
default="google_potent_veld_462405_t3",
type=str
)
parser.add_argument(
"--create_time_str",
# default="null",
default="20250731_162116",
type=str
)
parser.add_argument(
"--interval",
default=1,
type=int
)
args = parser.parse_args()
return args
def main():
args = get_args()
service = environment.get(args.service, dtype=json.loads)
project_id = service["project_id"]
google_application_credentials = Path(tempfile.gettempdir()) / f"llm_eval_system/{project_id}.json"
google_application_credentials.parent.mkdir(parents=True, exist_ok=True)
with open(google_application_credentials.as_posix(), "w", encoding="utf-8") as f:
content = json.dumps(service, ensure_ascii=False, indent=4)
f.write(f"{content}\n")
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = google_application_credentials.as_posix()
eval_dataset_dir = Path(args.eval_dataset_dir)
eval_dataset_dir.mkdir(parents=True, exist_ok=True)
eval_data_dir = Path(args.eval_data_dir)
eval_data_dir.mkdir(parents=True, exist_ok=True)
if args.create_time_str == "null":
tz = ZoneInfo("Asia/Shanghai")
now = datetime.now(tz)
create_time_str = now.strftime("%Y%m%d_%H%M%S")
# create_time_str = "20250729-interval-5"
else:
create_time_str = args.create_time_str
eval_dataset = eval_dataset_dir / args.eval_dataset_name
output_file = eval_data_dir / f"gemini_google/google/{args.model_name}/{args.client}/{args.service}/{create_time_str}/{args.eval_dataset_name}.raw"
output_file.parent.mkdir(parents=True, exist_ok=True)
client = genai.Client(
vertexai=True,
project=project_id,
# location="global",
location="us-east5",
)
generate_content_config = types.GenerateContentConfig(
top_p=0.95,
temperature=0.6,
# max_output_tokens=1,
response_modalities=["TEXT"],
thinking_config=types.ThinkingConfig(
thinking_budget=0
)
)
total = 0
# finished
finished_idx_set = set()
if os.path.exists(output_file.as_posix()):
with open(output_file.as_posix(), "r", encoding="utf-8") as f:
for row in f:
row = json.loads(row)
idx = row["idx"]
total = row["total"]
finished_idx_set.add(idx)
print(f"finished count: {len(finished_idx_set)}")
with open(eval_dataset.as_posix(), "r", encoding="utf-8") as fin, open(output_file.as_posix(), "a+", encoding="utf-8") as fout:
for row in fin:
row = json.loads(row)
idx = row["idx"]
prompt = row["prompt"]
response = row["response"]
if idx in finished_idx_set:
continue
finished_idx_set.add(idx)
contents = [
types.Content(
role="user",
parts=[
types.Part.from_text(text=prompt)
]
)
]
time.sleep(args.interval)
print(f"sleep: {args.interval}")
time_begin = time.time()
llm_response: types.GenerateContentResponse = client.models.generate_content(
model=args.model_name,
contents=contents,
config=generate_content_config,
)
time_cost = time.time() - time_begin
print(f"time_cost: {time_cost}")
try:
prediction = llm_response.candidates[0].content.parts[0].text
except TypeError as e:
print(f"request failed, error type: {type(e)}, error text: {str(e)}")
continue
total += 1
row_ = {
"idx": idx,
"prompt": prompt,
"response": response,
"prediction": prediction,
"total": total,
"time_cost": time_cost,
}
row_ = json.dumps(row_, ensure_ascii=False)
fout.write(f"{row_}\n")
return
if __name__ == "__main__":
main()