#!/usr/bin/python3 # -*- coding: utf-8 -*- """ https://cloud.google.com/vertex-ai/generative-ai/docs/partner-models/claude/use-claude?hl=zh-cn """ import argparse from datetime import datetime import json import os from pathlib import Path import sys import time import tempfile from zoneinfo import ZoneInfo # Python 3.9+ 自带,无需安装 pwd = os.path.abspath(os.path.dirname(__file__)) sys.path.append(os.path.join(pwd, "../")) from google import genai from google.genai import types from anthropic import AnthropicVertex from project_settings import environment, project_path def get_args(): parser = argparse.ArgumentParser() parser.add_argument( "--model_name", default="claude-opus-4@20250514", # default="claude-sonnet-4@20250514", type=str ) parser.add_argument( "--eval_dataset_name", # default="agent-bingoplus-ph-90-choice.jsonl", default="agent-lingoace-zh-400-choice.jsonl", # default="arc-easy-1000-choice.jsonl", type=str ) parser.add_argument( "--eval_dataset_dir", default=(project_path / "data/dataset").as_posix(), type=str ) parser.add_argument( "--eval_data_dir", default=(project_path / "data/eval_data").as_posix(), type=str ) parser.add_argument( "--client", default="shenzhen_sase", type=str ) parser.add_argument( "--service", # default="google_potent_veld_462405_t3", default="google_nxcloud_312303", type=str ) parser.add_argument( "--create_time_str", default="null", # default="20250731_162116", type=str ) parser.add_argument( "--interval", default=1, type=int ) args = parser.parse_args() return args def main(): args = get_args() service = environment.get(args.service, dtype=json.loads) project_id = service["project_id"] google_application_credentials = Path(tempfile.gettempdir()) / f"llm_eval_system/{project_id}.json" google_application_credentials.parent.mkdir(parents=True, exist_ok=True) with open(google_application_credentials.as_posix(), "w", encoding="utf-8") as f: content = json.dumps(service, ensure_ascii=False, indent=4) f.write(f"{content}\n") os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = google_application_credentials.as_posix() eval_dataset_dir = Path(args.eval_dataset_dir) eval_dataset_dir.mkdir(parents=True, exist_ok=True) eval_data_dir = Path(args.eval_data_dir) eval_data_dir.mkdir(parents=True, exist_ok=True) if args.create_time_str == "null": tz = ZoneInfo("Asia/Shanghai") now = datetime.now(tz) create_time_str = now.strftime("%Y%m%d_%H%M%S") # create_time_str = "20250729-interval-5" else: create_time_str = args.create_time_str eval_dataset = eval_dataset_dir / args.eval_dataset_name output_file = eval_data_dir / f"google_anthropic/anthropic/{args.model_name}/{args.client}/{args.service}/{create_time_str}/{args.eval_dataset_name}" output_file.parent.mkdir(parents=True, exist_ok=True) client = AnthropicVertex(project_id=project_id, region="us-east5") total = 0 total_correct = 0 # finished finished_idx_set = set() if os.path.exists(output_file.as_posix()): with open(output_file.as_posix(), "r", encoding="utf-8") as f: for row in f: row = json.loads(row) idx = row["idx"] total = row["total"] total_correct = row["total_correct"] finished_idx_set.add(idx) print(f"finished count: {len(finished_idx_set)}") with open(eval_dataset.as_posix(), "r", encoding="utf-8") as fin, open(output_file.as_posix(), "a+", encoding="utf-8") as fout: for row in fin: row = json.loads(row) idx = row["idx"] prompt = row["prompt"] response = row["response"] if idx in finished_idx_set: continue finished_idx_set.add(idx) try: time.sleep(args.interval) print(f"sleep: {args.interval}") time_begin = time.time() message = client.messages.create( model=args.model_name, max_tokens=1024, messages=[ { "role": "user", "content": prompt, } ], ) time_cost = time.time() - time_begin print(f"time_cost: {time_cost}") except Exception as e: print(f"request failed, error type: {type(e)}, error text: {str(e)}") continue prediction = message.content[0].text correct = 1 if prediction == response else 0 total += 1 total_correct += correct score = total_correct / total row_ = { "idx": idx, "prompt": prompt, "response": response, "prediction": prediction, "correct": correct, "total": total, "total_correct": total_correct, "score": score, "time_cost": time_cost, } row_ = json.dumps(row_, ensure_ascii=False) fout.write(f"{row_}\n") fout.flush() return if __name__ == "__main__": main()