#!/usr/bin/python3 # -*- coding: utf-8 -*- import argparse from datetime import datetime import json import os from pathlib import Path import sys import time from zoneinfo import ZoneInfo # Python 3.9+ 自带,无需安装 pwd = os.path.abspath(os.path.dirname(__file__)) sys.path.append(os.path.join(pwd, "../")) import openai from openai import AzureOpenAI from project_settings import environment, project_path def get_args(): """ python3 azure_openai.py --model_name gpt-4o-mini \ --eval_dataset_name agent-lingoace-zh-400-choice.jsonl \ --client "us_west(47.88.76.239)" \ --create_time_str 20250723_095001 \ --interval 10 python3 azure_openai.py --model_name gpt-4o-mini \ --eval_dataset_name arc-easy-1000-choice.jsonl \ --client "us_west(47.88.76.239)" \ --create_time_str 20250723_111000 \ --interval 10 """ parser = argparse.ArgumentParser() parser.add_argument( "--model_name", # default="gpt-4o", default="gpt-4o-mini", type=str ) parser.add_argument( "--eval_dataset_name", # default="agent-lingoace-zh-400-choice.jsonl", # default="arc-easy-1000-choice.jsonl", default="agent-bingoplus-ph-90-choice.jsonl", type=str ) parser.add_argument( "--eval_dataset_dir", default=(project_path / "data/dataset").as_posix(), type=str ) parser.add_argument( "--eval_data_dir", default=(project_path / "data/eval_data").as_posix(), type=str ) parser.add_argument( "--client", default="shenzhen_sase", type=str ) parser.add_argument( "--service", default="west_us_chatgpt_openai_azure_com", type=str ) parser.add_argument( "--create_time_str", default="null", type=str ) parser.add_argument( "--interval", default=5, type=int ) args = parser.parse_args() return args def main(): args = get_args() eval_dataset_dir = Path(args.eval_dataset_dir) eval_dataset_dir.mkdir(parents=True, exist_ok=True) eval_data_dir = Path(args.eval_data_dir) eval_data_dir.mkdir(parents=True, exist_ok=True) if args.create_time_str == "null": tz = ZoneInfo("Asia/Shanghai") now = datetime.now(tz) create_time_str = now.strftime("%Y%m%d_%H%M%S") # create_time_str = "20250722_173400" else: create_time_str = args.create_time_str eval_dataset = eval_dataset_dir / args.eval_dataset_name output_file = eval_data_dir / f"azure_openai/azure/{args.model_name}/{args.client}/{args.service}/{create_time_str}/{args.eval_dataset_name}" output_file.parent.mkdir(parents=True, exist_ok=True) service_params = environment.get(args.service, dtype=json.loads) client = AzureOpenAI( **service_params, # api_key="Dqt75blRABmhgrwhfcupd1rq44YqNuEgku8FcFFDrEljMq6gltf0JQQJ99BCACYeBjFXJ3w3AAABACOG2njW", # api_version="2025-01-01-preview", # azure_endpoint="https://west-us-chatgpt.openai.azure.com" ) total = 0 total_correct = 0 # finished finished_idx_set = set() if os.path.exists(output_file.as_posix()): with open(output_file.as_posix(), "r", encoding="utf-8") as f: for row in f: row = json.loads(row) idx = row["idx"] total = row["total"] total_correct = row["total_correct"] finished_idx_set.add(idx) print(f"finished count: {len(finished_idx_set)}") with open(eval_dataset.as_posix(), "r", encoding="utf-8") as fin, open(output_file.as_posix(), "a+", encoding="utf-8") as fout: for row in fin: row = json.loads(row) idx = row["idx"] prompt = row["prompt"] response = row["response"] if idx in finished_idx_set: continue finished_idx_set.add(idx) try: time.sleep(args.interval) print(f"sleep: {args.interval}") time_begin = time.time() llm_response = client.chat.completions.create( model=args.model_name, messages=[{"role": "user", "content": prompt}], stream=False, max_tokens=1, top_p=0.95, temperature=0.6, logit_bias={ 32: 100, 33: 100, 34: 100, 35: 100, 36: 100, 37: 100, 38: 100, 39: 100, } ) time_cost = time.time() - time_begin print(f"time_cost: {time_cost}") except openai.BadRequestError as e: print(f"request failed, error type: {type(e)}, error text: {str(e)}") continue prediction = llm_response.choices[0].message.content correct = 1 if prediction == response else 0 total += 1 total_correct += correct score = total_correct / total row_ = { "idx": idx, "prompt": prompt, "response": response, "prediction": prediction, "correct": correct, "total": total, "total_correct": total_correct, "score": score, "time_cost": time_cost, } row_ = json.dumps(row_, ensure_ascii=False) fout.write(f"{row_}\n") fout.flush() return if __name__ == "__main__": main()