Spaces:
Running
Running
File size: 4,789 Bytes
699386e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import pandas as pd
import sqlite3
import gradio as gr
import unicodedata
import re
import ast
import requests
database_url = "https://raw.githubusercontent.com/R3gm/database_zip_files/main/archive/database.csv"
database_path = "database.csv"
description = "This app digs through Hugging Face’s public zip files hunting for RVC models… and occasionally brings back random stuff that has nothing to do with them. Don’t worry though—the best RVC matches are always shown first, because we like to pretend we’re organized."
def clean_file_url(val):
# If missing
if pd.isna(val):
return ""
# If it's already a list (e.g. from JSON/df directly)
if isinstance(val, list):
return ", ".join(map(str, val))
# If it's a string like '["a","b"]'
if isinstance(val, str) and val.strip().startswith("[") and val.strip().endswith("]"):
try:
parsed = ast.literal_eval(val)
if isinstance(parsed, list):
return ", ".join(map(str, parsed))
except Exception:
return val # fallback: leave as-is
# Otherwise, return as-is
return str(val)
def normalize(text: str) -> str:
if pd.isna(text):
return ""
# Convert to lowercase
text = text.lower()
# Remove accents
text = ''.join(
c for c in unicodedata.normalize('NFD', text)
if unicodedata.category(c) != 'Mn'
)
# Replace separators with space
return re.sub(r"[+()\-_/.]", " ", text)
def search_files(query: str):
if not query.strip():
return pd.DataFrame([{"Result": "Empty query"}])
keywords = normalize(query).split()
whole_conditions = " AND ".join([
f"(FILENAME_NORM LIKE '% {k} %' OR FILENAME_NORM LIKE '{k} %' OR FILENAME_NORM LIKE '% {k}' OR FILENAME_NORM = '{k}')"
for k in keywords
])
partial_conditions = " AND ".join([f"FILENAME_NORM LIKE '%{k}%'" for k in keywords])
sql = f"""
SELECT *,
CASE WHEN {whole_conditions} THEN 1 ELSE 0 END AS whole_match
FROM files
WHERE {partial_conditions}
ORDER BY whole_match DESC, orig_index ASC;
"""
df = pd.read_sql(sql, conn)
if df.empty:
return "<p>No matches found</p>"
df_subset = df.head(250) # limit 250 results
rows = []
for i, row in enumerate(df_subset.itertuples(index=False)):
filename = row.FILENAME
url = row.PARSED_URL
model_id = row.MODEL_ID
rows.append(f"""
<tr>
<td>{filename}</td>
<td>
<input type="text" value="{url}" id="copytext{i}" readonly
style="width:300px; padding:4px; border-radius:6px; border:1px solid #666;
background-color:var(--block-background-fill);
color:var(--body-text-color);" />
<button style="margin-left:5px; padding:4px 8px; border-radius:6px;
background-color:var(--button-primary-background-fill);
color:var(--button-primary-text-color);
border:none; cursor:pointer;"
onclick="navigator.clipboard.writeText(document.getElementById('copytext{i}').value)">
Copy
</button>
</td>
<td>{model_id}</td>
</tr>
""")
html = f"""
<table border=1 style="border-collapse:collapse; width:100%; text-align:left;">
<thead>
<tr>
<th style="padding:6px;">Filename</th>
<th style="padding:6px;">File URL</th>
<th style="padding:6px;">Repo ID</th>
</tr>
</thead>
<tbody>
{''.join(rows)}
</tbody>
</table>
"""
return html
response = requests.get(database_url, stream=True)
with open(database_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
df = pd.read_csv(database_path)
df["FILENAME_NORM"] = df["FILENAME"].apply(normalize)
df["PARSED_URL"] = df["PARSED_URL"].apply(clean_file_url)
df = df.reset_index(drop=True)
df["orig_index"] = df.index
# Connect to SQLite
conn = sqlite3.connect(":memory:", check_same_thread=False)
df.to_sql("files", conn, index=False, if_exists="replace")
with gr.Blocks() as demo:
gr.Markdown("## 🔍 RVC Voice Finder")
query_input = gr.Textbox(label="Search here", placeholder="Hatsune Miku")
button_query = gr.Button("Search")
output = gr.HTML(label="Search Results")
gr.Markdown(description)
query_input.submit(search_files, inputs=query_input, outputs=output)
button_query.click(search_files, inputs=query_input, outputs=output)
if __name__ == "__main__":
demo.launch(debug=True, show_error=True)
|