Spaces:
Sleeping
Sleeping
File size: 1,858 Bytes
a65a9a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import os
import streamlit as st
import pickle
import time
from langchain_openai import OpenAI
from langchain.chains import RetrievalQAWithSourcesChain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import UnstructuredURLLoader
from langchain_openai import OpenAIEmbeddings
from openai import OpenAI
from dotenv import load_dotenv
load_dotenv()
st.title("ChatGPT-like clone")
# Set OpenAI API key from Streamlit secrets
client = OpenAI(api_key=os.environ["OPENAI_API_KEY"])
# Set a default model
if "openai_model" not in st.session_state:
st.session_state["openai_model"] = "gpt-3.5-turbo" # we've added a default model to st.session_state
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input("What is up?"):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
# Display assistant response in chat message container
with st.chat_message("assistant"):
stream = client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
stream=True,
)
response = st.write_stream(stream)
st.session_state.messages.append({"role": "assistant", "content": response}) |