import os import streamlit as st import pickle import time from langchain_openai import OpenAI from langchain.chains import RetrievalQAWithSourcesChain from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.document_loaders import UnstructuredURLLoader from langchain_openai import OpenAIEmbeddings from openai import OpenAI from dotenv import load_dotenv load_dotenv() st.title("ChatGPT-like clone") # Set OpenAI API key from Streamlit secrets client = OpenAI(api_key=os.environ["OPENAI_API_KEY"]) # Set a default model if "openai_model" not in st.session_state: st.session_state["openai_model"] = "gpt-3.5-turbo" # we've added a default model to st.session_state # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # Accept user input if prompt := st.chat_input("What is up?"): # Add user message to chat history st.session_state.messages.append({"role": "user", "content": prompt}) # Display user message in chat message container with st.chat_message("user"): st.markdown(prompt) # Display assistant response in chat message container with st.chat_message("assistant"): stream = client.chat.completions.create( model=st.session_state["openai_model"], messages=[ {"role": m["role"], "content": m["content"]} for m in st.session_state.messages ], stream=True, ) response = st.write_stream(stream) st.session_state.messages.append({"role": "assistant", "content": response})