File size: 4,293 Bytes
fe94330
 
 
 
 
 
 
 
049883d
fe94330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6fcac1
fe94330
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import gradio as gr
import pandas as pd 
from realtabformer import REaLTabFormer
from scipy.io import arff
import os

rtf_model = REaLTabFormer(
    model_type="tabular",
    epochs=5, # Default is 200
    gradient_accumulation_steps=4)


def generate_data(file, num_samples):
    if '.arff' in file.name:
        data = arff.loadarff(open(file.name,'rt'))
        df = pd.DataFrame(data[0])
    elif '.csv' in file.name:
        df = pd.read_csv(file.name)
    rtf_model.fit(df, num_bootstrap=10) # Default is 500
    # Generate synthetic data
    samples = rtf_model.sample(n_samples=num_samples)

    return samples

def generate_relational_data(parent_file, child_file, join_on):
    parent_df = pd.read_csv(parent_file.name)
    child_df = pd.read_csv(child_file.name)

    #Make sure join_on column exists in both
    assert ((join_on in parent_df.columns) and
        (join_on in child_df.columns))

    rtf_model.fit(parent_df.drop(join_on, axis=1), num_bootstrap=100)

    pdir = Path("rtf_parent/")
    rtf_model.save(pdir)

    # # Get the most recently saved parent model,
    # # or a specify some other saved model.
    # parent_model_path = pdir / "idXXX"
    parent_model_path = sorted([
        p for p in pdir.glob("id*") if p.is_dir()],
        key=os.path.getmtime)[-1]

    child_model = REaLTabFormer(
    model_type="relational",
    parent_realtabformer_path=parent_model_path,
    epochs = 25,
    output_max_length=None,
    train_size=0.8)

    child_model.fit(
    df=child_df,
    in_df=parent_df,
    join_on=join_on,
    num_bootstrap=10)

    # Generate parent samples.
    parent_samples = rtf_model.sample(5)

    # Create the unique ids based on the index.
    parent_samples.index.name = join_on
    parent_samples = parent_samples.reset_index()

    # Generate the relational observations.
    child_samples = child_model.sample(
        input_unique_ids=parent_samples[join_on],
        input_df=parent_samples.drop(join_on, axis=1),
        gen_batch=5)

    return parent_samples, child_samples, gr.update(visible = True)
    

with gr.Blocks() as demo:
    gr.Markdown("""
                ## REaLTabFormer: Generating Realistic Relational and Tabular Data using Transformers
            """)
    gr.HTML('''
     <p style="margin-bottom: 10px; font-size: 94%">
                This is an unofficial demo for REaLTabFormer, an approach that can be used to generate synthetic data from single tabular data using GPT. The demo is based on the <a href='https://github.com/avsolatorio/REaLTabFormer' style='text-decoration: underline;' target='_blank'> Github </a> implementation provided by the authors.
              </p>
              ''')
    gr.HTML('''
    <p align="center"><img src="https://github.com/avsolatorio/RealTabFormer/raw/main/img/REalTabFormer_Final_EQ.png" style="width:40%"/></p>
    ''')
    
    with gr.Column():
        
        with gr.Tab("Upload Data as File: Tabular Data"):
            data_input_u = gr.File(label = 'Upload Data File (Currently supports CSV and ARFF)', file_types=[".csv", ".arff"])
            num_samples = gr.Slider(label="Number of Samples", minimum=5, maximum=100, value=5, step=10)
            generate_data_btn = gr.Button('Generate Synthetic Data')

        with gr.Tab("Upload Data as File: Relational Data"):
            data_input_parent = gr.File(label = 'Upload Data File for Parent Dataset', file_types=[ ".csv"])
            data_input_child = gr.File(label = 'Upload Data File for Child Dataset', file_types=[ ".csv"])
            join_on = gr.Textbox(label = 'Column name to join on')
            
            generate_data_btn_relational = gr.Button('Generate Synthetic Data')

        with gr.Row():
            #data_sample = gr.Dataframe(label = "Original Data")
            data_output = gr.Dataframe(label = "Synthetic Data")
        with gr.Row(visible = False) as child_sample:
            data_output_child = gr.Dataframe(label = "Synthetic Data for Child Dataset")
    
    
    generate_data_btn.click(generate_data, inputs = [data_input_u,num_samples], outputs = [data_output])
    generate_data_btn_relational.click(generate_relational_data, inputs = [data_input_parent,data_input_child,join_on], outputs = [data_output, data_output_child, child_sample])
    

    
demo.launch()