File size: 532 Bytes
9805430 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
import streamlit as st
from rag_pipeline import generate_answer
from rag_pipeline import index, corpus_embeddings, corpus, embed_model
st.set_page_config(page_title="Medical QA Assistant 🧬", page_icon="🧠")
st.title("🧠 Medical QA Assistant")
st.write("Ask any medical question and get a science-based answer from PubMed!")
query = st.text_input("Enter your medical question:")
if st.button("Get Answer") and query:
answer = generate_answer(query, index, corpus_embeddings, corpus, embed_model)
st.success(answer)
|