File size: 532 Bytes
9805430
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
import streamlit as st
from rag_pipeline import generate_answer
from rag_pipeline import index, corpus_embeddings, corpus, embed_model

st.set_page_config(page_title="Medical QA Assistant 🧬", page_icon="🧠")
st.title("🧠 Medical QA Assistant")
st.write("Ask any medical question and get a science-based answer from PubMed!")

query = st.text_input("Enter your medical question:")

if st.button("Get Answer") and query:
    answer = generate_answer(query, index, corpus_embeddings, corpus, embed_model)
    st.success(answer)