Spaces:
Paused
Paused
File size: 137,919 Bytes
05fcd0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 |
import gradio as gr
import time
import datetime
import random
import json
import os
import shutil
from typing import List, Dict, Any, Optional
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import base64
import io
import functools
from modules.version import APP_VERSION, APP_VERSION_DISPLAY
import subprocess
import itertools
import re
from collections import defaultdict
import imageio
import imageio.plugins.ffmpeg
import ffmpeg
from diffusers_helper.utils import generate_timestamp
from modules.video_queue import JobStatus, Job, JobType
from modules.prompt_handler import get_section_boundaries, get_quick_prompts, parse_timestamped_prompt
from modules.llm_enhancer import enhance_prompt
from modules.llm_captioner import caption_image
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from diffusers_helper.bucket_tools import find_nearest_bucket
from modules.pipelines.metadata_utils import create_metadata
from modules import DUMMY_LORA_NAME # Import the constant
from modules.toolbox_app import tb_processor
from modules.toolbox_app import tb_create_video_toolbox_ui, tb_get_formatted_toolbar_stats
from modules.xy_plot_ui import create_xy_plot_ui, xy_plot_process
# Define the dummy LoRA name as a constant
def create_interface(
process_fn,
monitor_fn,
end_process_fn,
update_queue_status_fn,
load_lora_file_fn,
job_queue,
settings,
default_prompt: str = '[1s: The person waves hello] [3s: The person jumps up and down] [5s: The person does a dance]',
lora_names: list = [],
lora_values: list = []
):
"""
Create the Gradio interface for the video generation application
Args:
process_fn: Function to process a new job
monitor_fn: Function to monitor an existing job
end_process_fn: Function to cancel the current job
update_queue_status_fn: Function to update the queue status display
default_prompt: Default prompt text
lora_names: List of loaded LoRA names
Returns:
Gradio Blocks interface
"""
def is_video_model(model_type_value):
return model_type_value in ["Video", "Video with Endframe", "Video F1"]
# Add near the top of create_interface function, after the initial setup
def get_latents_display_top():
"""Get current latents display preference - centralized access point"""
return settings.get("latents_display_top", False)
def create_latents_layout_update():
"""Create a standardized layout update based on current setting"""
display_top = get_latents_display_top()
if display_top:
return (
gr.update(visible=True), # top_preview_row
gr.update(visible=False, value=None) # preview_image (right column)
)
else:
return (
gr.update(visible=False), # top_preview_row
gr.update(visible=True) # preview_image (right column)
)
# Get section boundaries and quick prompts
section_boundaries = get_section_boundaries()
quick_prompts = get_quick_prompts()
# --- Function to update queue stats (Moved earlier to resolve UnboundLocalError) ---
def update_stats(*args): # Accept any arguments and ignore them
# Get queue status data
queue_status_data = update_queue_status_fn()
# Get queue statistics for the toolbar display
jobs = job_queue.get_all_jobs()
# Count jobs by status
pending_count = 0
running_count = 0
completed_count = 0
for job in jobs:
if hasattr(job, 'status'):
status = str(job.status)
if status == "JobStatus.PENDING":
pending_count += 1
elif status == "JobStatus.RUNNING":
running_count += 1
elif status == "JobStatus.COMPLETED":
completed_count += 1
# Format the queue stats display text
queue_stats_text = f"<p style='margin:0;color:white;' class='toolbar-text'>Queue: {pending_count} | Running: {running_count} | Completed: {completed_count}</p>"
return queue_status_data, queue_stats_text
# --- Preset System Functions ---
PRESET_FILE = os.path.join(".framepack", "generation_presets.json")
def load_presets(model_type):
if not os.path.exists(PRESET_FILE):
return []
with open(PRESET_FILE, 'r') as f:
data = json.load(f)
return list(data.get(model_type, {}).keys())
# Create the interface
css = make_progress_bar_css()
css += """
.short-import-box, .short-import-box > div {
min-height: 40px !important;
height: 40px !important;
}
/* Image container styling - more aggressive approach */
.contain-image, .contain-image > div, .contain-image > div > img {
object-fit: contain !important;
}
#non-mirrored-video {
transform: scaleX(-1) !important;
}
/* Target all images in the contain-image class and its children */
.contain-image img,
.contain-image > div > img,
.contain-image * img {
object-fit: contain !important;
width: 100% !important;
height: 60vh !important;
max-height: 100% !important;
max-width: 100% !important;
}
/* Additional selectors to override Gradio defaults */
.gradio-container img,
.gradio-container .svelte-1b5oq5x,
.gradio-container [data-testid="image"] img {
object-fit: contain !important;
}
/* Toolbar styling */
#fixed-toolbar {
position: fixed;
top: 0;
left: 0;
width: 100vw;
z-index: 1000;
background: #333;
color: #fff;
padding: 0px 10px; /* Reduced top/bottom padding */
display: flex;
align-items: center;
gap: 8px;
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
}
/* Responsive toolbar title */
.toolbar-title {
font-size: 1.4rem;
margin: 0;
color: white;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
}
/* Toolbar Patreon link */
.toolbar-patreon {
margin: 0 0 0 20px;
color: white;
font-size: 0.9rem;
white-space: nowrap;
display: inline-block;
}
.toolbar-patreon a {
color: white;
text-decoration: none;
}
.toolbar-patreon a:hover {
text-decoration: underline;
}
/* Toolbar Version number */
.toolbar-version {
margin: 0 15px; /* Space around version */
color: white;
font-size: 0.8rem;
white-space: nowrap;
display: inline-block;
}
/* Responsive design for screens */
@media (max-width: 1147px) {
.toolbar-patreon, .toolbar-version { /* Hide both on smaller screens */
display: none;
}
.footer-patreon, .footer-version { /* Show both in footer on smaller screens */
display: inline-block !important; /* Ensure they are shown */
}
#fixed-toolbar {
gap: 4px !important; /* Reduce gap for screens <= 1024px */
}
#fixed-toolbar > div:first-child { /* Target the first gr.Column (Title) */
min-width: fit-content !important; /* Override Python-set min-width */
flex-shrink: 0 !important; /* Prevent title column from shrinking too much */
}
}
@media (min-width: 1148px) {
.footer-patreon, .footer-version { /* Hide both in footer on larger screens */
display: none !important;
}
}
@media (max-width: 768px) {
.toolbar-title {
font-size: 1.1rem;
max-width: 150px;
}
#fixed-toolbar {
padding: 3px 6px;
gap: 4px;
}
.toolbar-text {
font-size: 0.75rem;
}
}
@media (max-width: 510px) {
#toolbar-ram-col, #toolbar-vram-col, #toolbar-gpu-col {
display: none !important;
}
}
@media (max-width: 480px) {
.toolbar-title {
font-size: 1rem;
max-width: 120px;
}
#fixed-toolbar {
padding: 2px 4px;
gap: 2px;
}
.toolbar-text {
font-size: 0.7rem;
}
}
/* Button styling */
#toolbar-add-to-queue-btn button {
font-size: 14px !important;
padding: 4px 16px !important;
height: 32px !important;
min-width: 80px !important;
}
.narrow-button {
min-width: 40px !important;
width: 40px !important;
padding: 0 !important;
margin: 0 !important;
}
.gr-button-primary {
color: white;
}
/* Layout adjustments */
body, .gradio-container {
padding-top: 42px !important; /* Adjusted for new toolbar height (36px - 10px) */
}
@media (max-width: 848px) {
body, .gradio-container {
padding-top: 48px !important;
}
}
@media (max-width: 768px) {
body, .gradio-container {
padding-top: 22px !important; /* Adjusted for new toolbar height (32px - 10px) */
}
}
@media (max-width: 480px) {
body, .gradio-container {
padding-top: 18px !important; /* Adjusted for new toolbar height (28px - 10px) */
}
}
/* hide the gr.Video source selection bar for tb_input_video_component */
#toolbox-video-player .source-selection {
display: none !important;
}
/* control sizing for gr.Video components */
.video-size video {
max-height: 60vh;
min-height: 300px !important;
object-fit: contain;
}
/* NEW: Closes the gap between input tabs and the pipeline accordion below them */
#pipeline-controls-wrapper {
margin-top: -15px !important; /* Adjust this value to get the perfect "snug" fit */
}
/* --- NEW CSS RULE FOR GALLERY SCROLLING --- */
#gallery-scroll-wrapper {
max-height: 600px; /* Set your desired fixed height */
overflow-y: auto; /* Add a scrollbar only when needed */
}
#toolbox-start-pipeline-btn {
margin-top: -14px !important; /* Adjust this value to get the perfect alignment */
}
.control-group {
border-top: 1px solid #ccc;
border-bottom: 1px solid #ccc;
margin: 12px 0;
}
"""
# Get the theme from settings
current_theme = settings.get("gradio_theme", "default") # Use default if not found
block = gr.Blocks(css=css, title="FramePack Studio", theme=current_theme).queue()
with block:
with gr.Row(elem_id="fixed-toolbar"):
with gr.Column(scale=0, min_width=400): # Title/Version/Patreon
gr.HTML(f"""
<div style="display: flex; align-items: center;">
<h1 class='toolbar-title'>FP Studio</h1>
<p class='toolbar-version'>{APP_VERSION_DISPLAY}</p>
<p class='toolbar-patreon'><a href='https://patreon.com/Colinu' target='_blank'>Support on Patreon</a></p>
</div>
""")
# REMOVED: refresh_stats_btn - Toolbar refresh button is no longer needed
# with gr.Column(scale=0, min_width=40):
# refresh_stats_btn = gr.Button("⟳", elem_id="refresh-stats-btn", elem_classes="narrow-button")
with gr.Column(scale=1, min_width=180): # Queue Stats
queue_stats_display = gr.Markdown("<p style='margin:0;color:white;' class='toolbar-text'>Queue: 0 | Running: 0 | Completed: 0</p>")
# --- System Stats Display - Single gr.Textbox per stat ---
with gr.Column(scale=0, min_width=173, elem_id="toolbar-ram-col"): # RAM Column
toolbar_ram_display_component = gr.Textbox(
value="RAM: N/A",
interactive=False,
lines=1,
max_lines=1,
show_label=False,
container=False,
elem_id="toolbar-ram-stat",
elem_classes="toolbar-stat-textbox"
)
with gr.Column(scale=0, min_width=138, elem_id="toolbar-vram-col"): # VRAM Column
toolbar_vram_display_component = gr.Textbox(
value="VRAM: N/A",
interactive=False,
lines=1,
max_lines=1,
show_label=False,
container=False,
elem_id="toolbar-vram-stat",
elem_classes="toolbar-stat-textbox"
# Visibility controlled by tb_get_formatted_toolbar_stats
)
with gr.Column(scale=0, min_width=130, elem_id="toolbar-gpu-col"): # GPU Column
toolbar_gpu_display_component = gr.Textbox(
value="GPU: N/A",
interactive=False,
lines=1,
max_lines=1,
show_label=False,
container=False,
elem_id="toolbar-gpu-stat",
elem_classes="toolbar-stat-textbox"
# Visibility controlled by tb_get_formatted_toolbar_stats
)
# --- End of System Stats Display ---
# Removed old version_display column
# --- End of Toolbar ---
# Essential to capture main_tabs_component for later use by send_to_toolbox_btn
with gr.Tabs(elem_id="main_tabs") as main_tabs_component:
with gr.Tab("Generate", id="generate_tab"):
# NEW: Top preview area for latents display
with gr.Row(visible=get_latents_display_top()) as top_preview_row:
top_preview_image = gr.Image(
label="Next Latents (Top Display)",
height=150,
visible=True,
type="numpy",
interactive=False,
elem_classes="contain-image",
image_mode="RGB"
)
with gr.Row():
with gr.Column(scale=2):
model_type = gr.Radio(
choices=[("Original", "Original"), ("Original with Endframe", "Original with Endframe"), ("F1", "F1"), ("Video", "Video"), ("Video with Endframe", "Video with Endframe"), ("Video F1", "Video F1")],
value="Original",
label="Generation Type"
)
with gr.Accordion("Original Presets", open=False, visible=True) as preset_accordion:
with gr.Row():
preset_dropdown = gr.Dropdown(label="Select Preset", choices=load_presets("Original"), interactive=True, scale=2)
delete_preset_button = gr.Button("🗑️ Delete", variant="stop", scale=1)
with gr.Row():
preset_name_textbox = gr.Textbox(label="Preset Name", placeholder="Enter a name for your preset", scale=2)
save_preset_button = gr.Button("💾 Save", variant="primary", scale=1)
with gr.Row(visible=False) as confirm_delete_row:
gr.Markdown("### Are you sure you want to delete this preset?")
confirm_delete_yes_btn = gr.Button("🗑️ Yes, Delete", variant="stop")
confirm_delete_no_btn = gr.Button("↩️ No, Go Back")
with gr.Accordion("Basic Parameters", open=True, visible=True) as basic_parameters_accordion:
with gr.Group():
total_second_length = gr.Slider(label="Video Length (Seconds)", minimum=1, maximum=120, value=6, step=0.1)
with gr.Row("Resolution"):
resolutionW = gr.Slider(
label="Width", minimum=128, maximum=768, value=640, step=32,
info="Nearest valid width will be used."
)
resolutionH = gr.Slider(
label="Height", minimum=128, maximum=768, value=640, step=32,
info="Nearest valid height will be used."
)
resolution_text = gr.Markdown(value="<div style='text-align:right; padding:5px 15px 5px 5px;'>Selected bucket for resolution: 640 x 640</div>", label="", show_label=False)
# --- START OF REFACTORED XY PLOT SECTION ---
xy_plot_components = create_xy_plot_ui(
lora_names=lora_names,
default_prompt=default_prompt,
DUMMY_LORA_NAME=DUMMY_LORA_NAME,
)
xy_group = xy_plot_components["group"]
xy_plot_status = xy_plot_components["status"]
xy_plot_output = xy_plot_components["output"]
# --- END OF REFACTORED XY PLOT SECTION ---
with gr.Group(visible=True) as standard_generation_group: # Default visibility: True because "Original" model is not "Video"
with gr.Group(visible=True) as image_input_group: # This group now only contains the start frame image
with gr.Row():
with gr.Column(scale=1): # Start Frame Image Column
input_image = gr.Image(
sources='upload',
type="numpy",
label="Start Frame (optional)",
elem_classes="contain-image",
image_mode="RGB",
show_download_button=False,
show_label=True, # Keep label for clarity
container=True
)
with gr.Group(visible=False) as video_input_group:
input_video = gr.Video(
sources='upload',
label="Video Input",
height=420,
show_label=True
)
combine_with_source = gr.Checkbox(
label="Combine with source video",
value=True,
info="If checked, the source video will be combined with the generated video",
interactive=True
)
num_cleaned_frames = gr.Slider(label="Number of Context Frames (Adherence to Video)", minimum=2, maximum=10, value=5, step=1, interactive=True, info="Expensive. Retain more video details. Reduce if memory issues or motion too restricted (jumpcut, ignoring prompt, still).")
# End Frame Image Input
# Initial visibility is False, controlled by update_input_visibility
with gr.Column(scale=1, visible=False) as end_frame_group_original:
end_frame_image_original = gr.Image(
sources='upload',
type="numpy",
label="End Frame (Optional)",
elem_classes="contain-image",
image_mode="RGB",
show_download_button=False,
show_label=True,
container=True
)
# End Frame Influence slider
# Initial visibility is False, controlled by update_input_visibility
with gr.Group(visible=False) as end_frame_slider_group:
end_frame_strength_original = gr.Slider(
label="End Frame Influence",
minimum=0.05,
maximum=1.0,
value=1.0,
step=0.05,
info="Controls how strongly the end frame guides the generation. 1.0 is full influence."
)
with gr.Row():
prompt = gr.Textbox(label="Prompt", value=default_prompt, scale=10)
with gr.Row():
enhance_prompt_btn = gr.Button("✨ Enhance", scale=1)
caption_btn = gr.Button("✨ Caption", scale=1)
with gr.Accordion("Prompt Parameters", open=False):
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=True) # Make visible for both models
blend_sections = gr.Slider(
minimum=0, maximum=10, value=4, step=1,
label="Number of sections to blend between prompts"
)
with gr.Accordion("Batch Input", open=False):
batch_input_images = gr.File(
label="Batch Images (Upload one or more)",
file_count="multiple",
file_types=["image"],
type="filepath"
)
batch_input_gallery = gr.Gallery(
label="Selected Batch Images",
visible=False,
columns=5,
object_fit="contain",
height="auto"
)
add_batch_to_queue_btn = gr.Button("🚀 Add Batch to Queue", variant="primary")
with gr.Accordion("Generation Parameters", open=True):
with gr.Row():
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1)
def on_input_image_change(img):
if img is not None:
return gr.update(info="Nearest valid bucket size will be used. Height will be adjusted automatically."), gr.update(visible=False)
else:
return gr.update(info="Nearest valid width will be used."), gr.update(visible=True)
input_image.change(fn=on_input_image_change, inputs=[input_image], outputs=[resolutionW, resolutionH])
def on_resolution_change(img, resolutionW, resolutionH):
out_bucket_resH, out_bucket_resW = [640, 640]
if img is not None:
H, W, _ = img.shape
out_bucket_resH, out_bucket_resW = find_nearest_bucket(H, W, resolution=resolutionW)
else:
out_bucket_resH, out_bucket_resW = find_nearest_bucket(resolutionH, resolutionW, (resolutionW+resolutionH)/2) # if resolutionW > resolutionH else resolutionH
return gr.update(value=f"<div style='text-align:right; padding:5px 15px 5px 5px;'>Selected bucket for resolution: {out_bucket_resW} x {out_bucket_resH}</div>")
resolutionW.change(fn=on_resolution_change, inputs=[input_image, resolutionW, resolutionH], outputs=[resolution_text], show_progress="hidden")
resolutionH.change(fn=on_resolution_change, inputs=[input_image, resolutionW, resolutionH], outputs=[resolution_text], show_progress="hidden")
with gr.Row():
seed = gr.Number(label="Seed", value=2500, precision=0)
randomize_seed = gr.Checkbox(label="Randomize", value=True, info="Generate a new random seed for each job")
with gr.Accordion("LoRAs", open=False):
with gr.Row():
lora_selector = gr.Dropdown(
choices=lora_names,
label="Select LoRAs to Load",
multiselect=True,
value=[],
info="Select one or more LoRAs to use for this job"
)
lora_names_states = gr.State(lora_names)
lora_sliders = {}
for lora in lora_names:
lora_sliders[lora] = gr.Slider(
minimum=0.0, maximum=2.0, value=1.0, step=0.01,
label=f"{lora} Weight", visible=False, interactive=True
)
with gr.Accordion("Latent Image Options", open=False):
latent_type = gr.Dropdown(
["Noise", "White", "Black", "Green Screen"], label="Latent Image", value="Noise", info="Used as a starting point if no image is provided"
)
with gr.Accordion("Advanced Parameters", open=False):
gr.Markdown("#### Motion Model")
gr.Markdown("Settings for precise control of the motion model")
with gr.Group(elem_classes="control-group"):
latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, info='Change at your own risk, very experimental') # Should not change
gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.5)
gr.Markdown("#### CFG Scale")
gr.Markdown("Much better prompt following. Warning: Modifying these values from their defaults will almost double generation time. ⚠️")
with gr.Group(elem_classes="control-group"):
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=3.0, value=1.0, step=0.1)
rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.05)
gr.Markdown("#### Cache Options")
gr.Markdown("Using a cache will speed up generation. May affect quality, fine or even coarse details, and may change or inhibit motion. You can choose at most one.")
with gr.Group(elem_classes="control-group"):
with gr.Row():
cache_type = gr.Radio(["MagCache", "TeaCache", "None"], value='MagCache', label="Caching strategy", info="Which cache implementation to use, if any")
with gr.Row(): # MagCache now first
magcache_threshold = gr.Slider(label="MagCache Threshold", minimum=0.01, maximum=1.0, step=0.01, value=0.1, visible=True, info='[⬇️ **Faster**] Error tolerance. Lower = more estimated steps')
magcache_max_consecutive_skips = gr.Slider(label="MagCache Max Consecutive Skips", minimum=1, maximum=5, step=1, value=2, visible=True, info='[⬆️ **Faster**] Allow multiple estimated steps in a row')
magcache_retention_ratio = gr.Slider(label="MagCache Retention Ratio", minimum=0.0, maximum=1.0, step=0.01, value=0.25, visible=True, info='[⬇️ **Faster**] Disallow estimation in critical early steps')
with gr.Row():
teacache_num_steps = gr.Slider(label="TeaCache steps", minimum=1, maximum=50, step=1, value=25, visible=False, info='How many intermediate sections to keep in the cache')
teacache_rel_l1_thresh = gr.Slider(label="TeaCache rel_l1_thresh", minimum=0.01, maximum=1.0, step=0.01, value=0.15, visible=False, info='[⬇️ **Faster**] Relative L1 Threshold')
def update_cache_type(cache_type: str):
enable_magcache = False
enable_teacache = False
if cache_type == 'MagCache':
enable_magcache = True
elif cache_type == 'TeaCache':
enable_teacache = True
magcache_threshold_update = gr.update(visible=enable_magcache)
magcache_max_consecutive_skips_update = gr.update(visible=enable_magcache)
magcache_retention_ratio_update = gr.update(visible=enable_magcache)
teacache_num_steps_update = gr.update(visible=enable_teacache)
teacache_rel_l1_thresh_update = gr.update(visible=enable_teacache)
return [
magcache_threshold_update,
magcache_max_consecutive_skips_update,
magcache_retention_ratio_update,
teacache_num_steps_update,
teacache_rel_l1_thresh_update
]
cache_type.change(fn=update_cache_type, inputs=cache_type, outputs=[
magcache_threshold,
magcache_max_consecutive_skips,
magcache_retention_ratio,
teacache_num_steps,
teacache_rel_l1_thresh
])
with gr.Row("Metadata"):
json_upload = gr.File(
label="Upload Metadata JSON (optional)",
file_types=[".json"],
type="filepath",
height=140,
)
with gr.Column():
preview_image = gr.Image(
label="Next Latents",
height=150,
visible=not get_latents_display_top(),
type="numpy",
interactive=False,
elem_classes="contain-image",
image_mode="RGB"
)
result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=256, loop=True)
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
with gr.Row():
current_job_id = gr.Textbox(label="Current Job ID", value="", visible=True, interactive=True)
start_button = gr.Button(value="🚀 Add to Queue", variant="primary", elem_id="toolbar-add-to-queue-btn")
xy_plot_process_btn = gr.Button("🚀 Submit XY Plot", visible=False)
video_input_required_message = gr.Markdown(
"<p style='color: red; text-align: center;'>Input video required</p>", visible=False
)
end_button = gr.Button(value="❌ Cancel Current Job", interactive=True, visible=False)
with gr.Tab("Queue"):
with gr.Row():
with gr.Column():
with gr.Row() as queue_controls_row:
refresh_button = gr.Button("🔄 Refresh Queue")
load_queue_button = gr.Button("▶️ Resume Queue")
queue_export_button = gr.Button("📦 Export Queue")
clear_complete_button = gr.Button("🧹 Clear Completed Jobs", variant="secondary")
clear_queue_button = gr.Button("❌ Cancel Queued Jobs", variant="stop")
with gr.Row():
import_queue_file = gr.File(
label="Import Queue",
file_types=[".json", ".zip"],
type="filepath",
visible=True,
elem_classes="short-import-box"
)
with gr.Row(visible=False) as confirm_cancel_row:
gr.Markdown("### Are you sure you want to cancel all pending jobs?")
confirm_cancel_yes_btn = gr.Button("❌ Yes, Cancel All", variant="stop")
confirm_cancel_no_btn = gr.Button("↩️ No, Go Back")
with gr.Row():
queue_status = gr.DataFrame(
headers=["Job ID", "Type", "Status", "Created", "Started", "Completed", "Elapsed", "Preview"],
datatype=["str", "str", "str", "str", "str", "str", "str", "html"],
label="Job Queue"
)
with gr.Accordion("Queue Documentation", open=False):
gr.Markdown("""
## Queue Tab Guide
This tab is for managing your generation jobs.
- **Refresh Queue**: Update the job list.
- **Cancel Queue**: Stop all pending jobs.
- **Clear Complete**: Remove finished, failed, or cancelled jobs from the list.
- **Load Queue**: Load jobs from the default `queue.json`.
- **Export Queue**: Save the current job list and its images to a zip file.
- **Import Queue**: Load a queue from a `.json` or `.zip` file.
""")
# --- Event Handlers for Queue Tab ---
# Function to clear all jobs in the queue
def clear_all_jobs():
try:
cancelled_count = job_queue.clear_queue()
print(f"Cleared {cancelled_count} jobs from the queue")
return update_stats()
except Exception as e:
import traceback
print(f"Error in clear_all_jobs: {e}")
traceback.print_exc()
return [], ""
# Function to clear completed and cancelled jobs
def clear_completed_jobs():
try:
removed_count = job_queue.clear_completed_jobs()
print(f"Removed {removed_count} completed/cancelled jobs from the queue")
return update_stats()
except Exception as e:
import traceback
print(f"Error in clear_completed_jobs: {e}")
traceback.print_exc()
return [], ""
# Function to load queue from queue.json
def load_queue_from_json():
try:
loaded_count = job_queue.load_queue_from_json()
print(f"Loaded {loaded_count} jobs from queue.json")
return update_stats()
except Exception as e:
import traceback
print(f"Error loading queue from JSON: {e}")
traceback.print_exc()
return [], ""
# Function to import queue from a custom JSON file
def import_queue_from_file(file_path):
if not file_path:
return update_stats()
try:
loaded_count = job_queue.load_queue_from_json(file_path)
print(f"Loaded {loaded_count} jobs from {file_path}")
return update_stats()
except Exception as e:
import traceback
print(f"Error importing queue from file: {e}")
traceback.print_exc()
return [], ""
# Function to export queue to a zip file
def export_queue_to_zip():
try:
zip_path = job_queue.export_queue_to_zip()
if zip_path and os.path.exists(zip_path):
print(f"Queue exported to {zip_path}")
else:
print("Failed to export queue to zip")
return update_stats()
except Exception as e:
import traceback
print(f"Error exporting queue to zip: {e}")
traceback.print_exc()
return [], ""
# --- Connect Buttons ---
refresh_button.click(fn=update_stats, inputs=[], outputs=[queue_status, queue_stats_display])
# Confirmation logic for Cancel Queue
def show_cancel_confirmation():
return gr.update(visible=False), gr.update(visible=True)
def hide_cancel_confirmation():
return gr.update(visible=True), gr.update(visible=False)
def confirmed_clear_all_jobs():
qs_data, qs_text = clear_all_jobs()
return qs_data, qs_text, gr.update(visible=True), gr.update(visible=False)
clear_queue_button.click(fn=show_cancel_confirmation, inputs=None, outputs=[queue_controls_row, confirm_cancel_row])
confirm_cancel_no_btn.click(fn=hide_cancel_confirmation, inputs=None, outputs=[queue_controls_row, confirm_cancel_row])
confirm_cancel_yes_btn.click(fn=confirmed_clear_all_jobs, inputs=None, outputs=[queue_status, queue_stats_display, queue_controls_row, confirm_cancel_row])
clear_complete_button.click(fn=clear_completed_jobs, inputs=[], outputs=[queue_status, queue_stats_display])
queue_export_button.click(fn=export_queue_to_zip, inputs=[], outputs=[queue_status, queue_stats_display])
# Create a container for thumbnails (kept for potential future use, though not displayed in DataFrame)
with gr.Row():
thumbnail_container = gr.Column()
thumbnail_container.elem_classes = ["thumbnail-container"]
# Add CSS for thumbnails
with gr.Tab("Outputs", id="outputs_tab"): # Ensure 'id' is present for tab switching
outputDirectory_video = settings.get("output_dir", settings.default_settings['output_dir'])
outputDirectory_metadata = settings.get("metadata_dir", settings.default_settings['metadata_dir'])
def get_gallery_items():
items = []
for f in os.listdir(outputDirectory_metadata):
if f.endswith(".png"):
prefix = os.path.splitext(f)[0]
latest_video = get_latest_video_version(prefix)
if latest_video:
video_path = os.path.join(outputDirectory_video, latest_video)
mtime = os.path.getmtime(video_path)
preview_path = os.path.join(outputDirectory_metadata, f)
items.append((preview_path, prefix, mtime))
items.sort(key=lambda x: x[2], reverse=True)
return [(i[0], i[1]) for i in items]
def get_latest_video_version(prefix):
max_number = -1
selected_file = None
for f in os.listdir(outputDirectory_video):
if f.startswith(prefix + "_") and f.endswith(".mp4"):
# Skip files that include "combined" in their name
if "combined" in f:
continue
try:
num = int(f.replace(prefix + "_", '').replace(".mp4", ''))
if num > max_number:
max_number = num
selected_file = f
except ValueError:
# Ignore files that do not have a valid number in their name
continue
return selected_file
# load_video_and_info_from_prefix now also returns button visibility
def load_video_and_info_from_prefix(prefix):
video_file = get_latest_video_version(prefix)
json_path = os.path.join(outputDirectory_metadata, prefix) + ".json"
if not video_file or not os.path.exists(os.path.join(outputDirectory_video, video_file)) or not os.path.exists(json_path):
# If video or info not found, button should be hidden
return None, "Video or JSON not found.", gr.update(visible=False)
video_path = os.path.join(outputDirectory_video, video_file)
info_content = {"description": "no info"}
if os.path.exists(json_path):
with open(json_path, "r", encoding="utf-8") as f:
info_content = json.load(f)
# If video and info found, button should be visible
return video_path, json.dumps(info_content, indent=2, ensure_ascii=False), gr.update(visible=True)
gallery_items_state = gr.State(get_gallery_items())
selected_original_video_path_state = gr.State(None) # Holds the ORIGINAL, UNPROCESSED path
with gr.Row():
with gr.Column(scale=2):
thumbs = gr.Gallery(
# value=[i[0] for i in get_gallery_items()],
columns=[4],
allow_preview=False,
object_fit="cover",
height="auto"
)
refresh_button = gr.Button("🔄 Update Gallery")
with gr.Column(scale=5):
video_out = gr.Video(sources=[], autoplay=True, loop=True, visible=False)
with gr.Column(scale=1):
info_out = gr.Textbox(label="Generation info", visible=False)
send_to_toolbox_btn = gr.Button("➡️ Send to Post-processing", visible=False) # Added new send_to_toolbox_btn
def refresh_gallery():
new_items = get_gallery_items()
return gr.update(value=[i[0] for i in new_items]), new_items
refresh_button.click(fn=refresh_gallery, outputs=[thumbs, gallery_items_state])
# MODIFIED: on_select now handles visibility of the new button
def on_select(evt: gr.SelectData, gallery_items):
if evt.index is None or not gallery_items or evt.index >= len(gallery_items):
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
prefix = gallery_items[evt.index][1]
# original_video_path is e.g., "outputs/my_actual_video.mp4"
original_video_path, info_string, button_visibility_update = load_video_and_info_from_prefix(prefix)
# Determine visibility for video and info based on whether video_path was found
video_out_update = gr.update(value=original_video_path, visible=bool(original_video_path))
info_out_update = gr.update(value=info_string, visible=bool(original_video_path))
# IMPORTANT: Store the ORIGINAL, UNPROCESSED path in the gr.State
return video_out_update, info_out_update, button_visibility_update, original_video_path
thumbs.select(
fn=on_select,
inputs=[gallery_items_state],
outputs=[video_out, info_out, send_to_toolbox_btn, selected_original_video_path_state] # Output original path to State
)
with gr.Tab("Post-processing", id="toolbox_tab"):
# Call the function from toolbox_app.py to build the Toolbox UI
# The toolbox_ui_layout (e.g., a gr.Column) is automatically placed here.
toolbox_ui_layout, tb_target_video_input = tb_create_video_toolbox_ui()
with gr.Tab("Settings"):
with gr.Row():
with gr.Column():
save_metadata = gr.Checkbox(
label="Save Metadata",
info="Save to JSON file",
value=settings.get("save_metadata", 6),
)
gpu_memory_preservation = gr.Slider(
label="Memory Buffer for Stability (VRAM GB)",
minimum=1,
maximum=128,
step=0.1,
value=settings.get("gpu_memory_preservation", 6),
info="Increase reserve if you see computer freezes, stagnant generation, or super slow sampling steps (try 1G at a time).\
Otherwise smaller buffer is faster. Some models and lora need more buffer than others. \
(5.5 - 8.5 is a common range)"
)
mp4_crf = gr.Slider(
label="MP4 Compression",
minimum=0,
maximum=100,
step=1,
value=settings.get("mp4_crf", 16),
info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs."
)
clean_up_videos = gr.Checkbox(
label="Clean up video files",
value=settings.get("clean_up_videos", True),
info="If checked, only the final video will be kept after generation."
)
auto_cleanup_on_startup = gr.Checkbox(
label="Automatically clean up temp folders on startup",
value=settings.get("auto_cleanup_on_startup", False),
info="If checked, temporary files (inc. post-processing) will be cleaned up when the application starts."
)
latents_display_top = gr.Checkbox(
label="Display Next Latents across top of interface",
value=get_latents_display_top(),
info="If checked, the Next Latents preview will be displayed across the top of the interface instead of in the right column."
)
# gr.Markdown("---")
# gr.Markdown("### Startup Settings")
gr.Markdown("")
# Initial values for startup preset dropdown
# Ensure settings and load_presets are available in this scope
initial_startup_model_val = settings.get("startup_model_type", "None")
initial_startup_presets_choices_val = []
initial_startup_preset_value_val = None
if initial_startup_model_val and initial_startup_model_val != "None":
# load_presets is defined further down in create_interface
initial_startup_presets_choices_val = load_presets(initial_startup_model_val)
saved_preset_for_initial_model_val = settings.get("startup_preset_name")
if saved_preset_for_initial_model_val in initial_startup_presets_choices_val:
initial_startup_preset_value_val = saved_preset_for_initial_model_val
startup_model_type_dropdown = gr.Dropdown(
label="Startup Model Type",
choices=["None"] + [choice[0] for choice in model_type.choices if choice[0] != "XY Plot"], # model_type is the Radio on Generate tab
value=initial_startup_model_val,
info="Select a model type to load on startup. 'None' to disable."
)
startup_preset_name_dropdown = gr.Dropdown(
label="Startup Preset",
choices=initial_startup_presets_choices_val,
value=initial_startup_preset_value_val,
info="Select a preset for the startup model. Updates when Startup Model Type changes.",
interactive=True # Must be interactive to be updated by another component
)
with gr.Accordion("System Prompt", open=False):
with gr.Row(equal_height=True): # New Row to contain checkbox and reset button
override_system_prompt = gr.Checkbox(
label="Override System Prompt",
value=settings.get("override_system_prompt", False),
info="If checked, the system prompt template below will be used instead of the default one.",
scale=1 # Give checkbox some scale
)
reset_system_prompt_btn = gr.Button(
"🔄 Reset",
scale=0
)
system_prompt_template = gr.Textbox(
label="System Prompt Template",
value=settings.get("system_prompt_template", "{\"template\": \"<|start_header_id|>system<|end_header_id|>\\n\\nDescribe the video by detailing the following aspects: 1. The main content and theme of the video.2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects.3. Actions, events, behaviors temporal relationships, physical movement changes of the objects.4. background environment, light, style and atmosphere.5. camera angles, movements, and transitions used in the video:<|eot_id|><|start_header_id|>user<|end_header_id|>\\n\\n{}<|eot_id|>\", \"crop_start\": 95}"),
lines=10,
info="System prompt template used for video generation. Must be a valid JSON or Python dictionary string with 'template' and 'crop_start' keys. Example: {\"template\": \"your template here\", \"crop_start\": 95}"
)
# The reset_system_prompt_btn is now defined above within the Row
# --- Settings Tab Event Handlers ---
output_dir = gr.Textbox(
label="Output Directory",
value=settings.get("output_dir"),
placeholder="Path to save generated videos"
)
metadata_dir = gr.Textbox(
label="Metadata Directory",
value=settings.get("metadata_dir"),
placeholder="Path to save metadata files"
)
lora_dir = gr.Textbox(
label="LoRA Directory",
value=settings.get("lora_dir"),
placeholder="Path to LoRA models"
)
gradio_temp_dir = gr.Textbox(label="Gradio Temporary Directory", value=settings.get("gradio_temp_dir"))
auto_save = gr.Checkbox(
label="Auto-save settings",
value=settings.get("auto_save_settings", True)
)
# Add Gradio Theme Dropdown
gradio_themes = ["default", "base", "soft", "glass", "mono", "origin", "citrus", "monochrome", "ocean", "NoCrypt/miku", "earneleh/paris", "gstaff/xkcd"]
theme_dropdown = gr.Dropdown(
label="Theme",
choices=gradio_themes,
value=settings.get("gradio_theme", "default"),
info="Select the Gradio UI theme. Requires restart."
)
save_btn = gr.Button("💾 Save Settings")
cleanup_btn = gr.Button("🗑️ Clean Up Temporary Files")
status = gr.HTML("")
cleanup_output = gr.Textbox(label="Cleanup Status", interactive=False)
def save_settings(save_metadata, gpu_memory_preservation, mp4_crf, clean_up_videos, auto_cleanup_on_startup_val, latents_display_top_val, override_system_prompt_value, system_prompt_template_value, output_dir, metadata_dir, lora_dir, gradio_temp_dir, auto_save, selected_theme, startup_model_type_val, startup_preset_name_val):
"""Handles the manual 'Save Settings' button click."""
# This function is for the manual save button.
# It collects all current UI values and saves them.
# The auto-save logic is handled by individual .change() and .blur() handlers
# calling settings.set().
# First, update the settings object with all current values from the UI
try:
# Save the system prompt template as is, without trying to parse it
# The hunyuan.py file will handle parsing it when needed
processed_template = system_prompt_template_value
settings.save_settings(
save_metadata=save_metadata,
gpu_memory_preservation=gpu_memory_preservation,
mp4_crf=mp4_crf,
clean_up_videos=clean_up_videos,
auto_cleanup_on_startup=auto_cleanup_on_startup_val, # ADDED
latents_display_top=latents_display_top_val, # NEW: Added latents display position setting
override_system_prompt=override_system_prompt_value,
system_prompt_template=processed_template,
output_dir=output_dir,
metadata_dir=metadata_dir,
lora_dir=lora_dir,
gradio_temp_dir=gradio_temp_dir,
auto_save_settings=auto_save,
gradio_theme=selected_theme,
startup_model_type=startup_model_type_val,
startup_preset_name=startup_preset_name_val
)
# settings.save_settings() is called inside settings.save_settings if auto_save is true,
# but for the manual button, we ensure it saves regardless of the auto_save flag's previous state.
# The call above to settings.save_settings already handles writing to disk.
return "<p style='color:green;'>Settings saved successfully! Restart required for theme change.</p>"
except Exception as e:
return f"<p style='color:red;'>Error saving settings: {str(e)}</p>"
def handle_individual_setting_change(key, value, setting_name_for_ui):
"""Called by .change() and .submit() events of individual setting components."""
if key == "auto_save_settings":
# For the "auto_save_settings" checkbox itself:
# 1. Update its value directly in the settings object in memory.
# This bypasses the conditional save logic within settings.set() for this specific action.
settings.settings[key] = value
# 2. Force a save of all settings to disk. This will be correct because either:
# - auto_save_settings is turning True: so all changes already in memory need to be saved now.
# - auto_save_settings turning False from True: prior changes already saved so only auto_save_settings will be saved.
settings.save_settings()
# 3. Provide feedback.
if value is True:
return f"<p style='color:green;'>'{setting_name_for_ui}' setting is now ON and saved.</p>"
else:
return f"<p style='color:green;'>'{setting_name_for_ui}' setting is now OFF and saved.</p>"
else:
# For all other settings:
# Let settings.set() handle the auto-save logic based on the current "auto_save_settings" value.
settings.set(key, value) # settings.set() will call save_settings() if auto_save is True
if settings.get("auto_save_settings"): # Check the current state of auto_save
return f"<p style='color:blue;'>'{setting_name_for_ui}' setting auto-saved.</p>"
else:
return f"<p style='color:gray;'>'{setting_name_for_ui}' setting changed (auto-save is off, click 'Save Settings').</p>"
# REMOVE `cleanup_temp_folder` from the `inputs` list
save_btn.click(
fn=save_settings,
inputs=[save_metadata, gpu_memory_preservation, mp4_crf, clean_up_videos, auto_cleanup_on_startup, latents_display_top, override_system_prompt, system_prompt_template, output_dir, metadata_dir, lora_dir, gradio_temp_dir, auto_save, theme_dropdown, startup_model_type_dropdown, startup_preset_name_dropdown],
outputs=[status]
).then(
# NEW: Update latents display layout after manual save
fn=create_latents_layout_update,
inputs=None,
outputs=[top_preview_row, preview_image]
)
def reset_system_prompt_template_value():
return settings.default_settings["system_prompt_template"], False
reset_system_prompt_btn.click(
fn=reset_system_prompt_template_value,
outputs=[system_prompt_template, override_system_prompt]
).then( # Trigger auto-save for the reset values if auto-save is on
lambda val_template, val_override: handle_individual_setting_change("system_prompt_template", val_template, "System Prompt Template") or handle_individual_setting_change("override_system_prompt", val_override, "Override System Prompt"),
inputs=[system_prompt_template, override_system_prompt], outputs=[status])
def manual_cleanup_handler():
"""UI handler for the manual cleanup button."""
# This directly calls the toolbox_processor's cleanup method and returns the summary string.
summary = tb_processor.tb_clear_temporary_files()
return summary
cleanup_btn.click(
fn=manual_cleanup_handler,
inputs=None,
outputs=[cleanup_output]
)
# Add .change handlers for auto-saving individual settings
save_metadata.change(lambda v: handle_individual_setting_change("save_metadata", v, "Save Metadata"), inputs=[save_metadata], outputs=[status])
gpu_memory_preservation.change(lambda v: handle_individual_setting_change("gpu_memory_preservation", v, "GPU Memory Preservation"), inputs=[gpu_memory_preservation], outputs=[status])
mp4_crf.change(lambda v: handle_individual_setting_change("mp4_crf", v, "MP4 Compression"), inputs=[mp4_crf], outputs=[status])
clean_up_videos.change(lambda v: handle_individual_setting_change("clean_up_videos", v, "Clean Up Videos"), inputs=[clean_up_videos], outputs=[status])
# NEW: auto-cleanup temp files on startup checkbox
auto_cleanup_on_startup.change(lambda v: handle_individual_setting_change("auto_cleanup_on_startup", v, "Auto Cleanup on Startup"), inputs=[auto_cleanup_on_startup], outputs=[status])
# NEW: latents display position setting
latents_display_top.change(lambda v: handle_individual_setting_change("latents_display_top", v, "Latents Display Position"), inputs=[latents_display_top], outputs=[status])
# Connect the latents display setting to layout updates
def update_latents_display_layout_from_checkbox(display_top):
"""Update layout when checkbox changes - uses the checkbox value directly"""
if display_top:
return (
gr.update(visible=True), # top_preview_row
gr.update(visible=False, value=None) # preview_image (right column)
)
else:
return (
gr.update(visible=False), # top_preview_row
gr.update(visible=True) # preview_image (right column)
)
latents_display_top.change(
fn=update_latents_display_layout_from_checkbox,
inputs=[latents_display_top],
outputs=[top_preview_row, preview_image]
)
override_system_prompt.change(lambda v: handle_individual_setting_change("override_system_prompt", v, "Override System Prompt"), inputs=[override_system_prompt], outputs=[status])
# Using .blur for text changes so they are processed after the user finishes, not on every keystroke
system_prompt_template.blur(lambda v: handle_individual_setting_change("system_prompt_template", v, "System Prompt Template"), inputs=[system_prompt_template], outputs=[status])
# reset_system_prompt_btn # is handled separately above, on click
# Using .blur for text changes so they are processed after the user finishes, not on every keystroke
output_dir.blur(lambda v: handle_individual_setting_change("output_dir", v, "Output Directory"), inputs=[output_dir], outputs=[status])
metadata_dir.blur(lambda v: handle_individual_setting_change("metadata_dir", v, "Metadata Directory"), inputs=[metadata_dir], outputs=[status])
lora_dir.blur(lambda v: handle_individual_setting_change("lora_dir", v, "LoRA Directory"), inputs=[lora_dir], outputs=[status])
gradio_temp_dir.blur(lambda v: handle_individual_setting_change("gradio_temp_dir", v, "Gradio Temporary Directory"), inputs=[gradio_temp_dir], outputs=[status])
auto_save.change(lambda v: handle_individual_setting_change("auto_save_settings", v, "Auto-save Settings"), inputs=[auto_save], outputs=[status])
theme_dropdown.change(lambda v: handle_individual_setting_change("gradio_theme", v, "Theme"), inputs=[theme_dropdown], outputs=[status])
# Event handlers for startup settings
def update_startup_preset_dropdown_choices(selected_startup_model_type_from_ui):
if not selected_startup_model_type_from_ui or selected_startup_model_type_from_ui == "None":
return gr.update(choices=[], value=None)
loaded_presets_for_model = load_presets(selected_startup_model_type_from_ui)
# Get the preset name that was saved for the *previous* model type
current_saved_startup_preset = settings.get("startup_preset_name")
# Default to None
value_to_select = None
# If the previously saved preset name exists for the new model, select it
if current_saved_startup_preset and current_saved_startup_preset in loaded_presets_for_model:
value_to_select = current_saved_startup_preset
return gr.update(choices=loaded_presets_for_model, value=value_to_select)
startup_model_type_dropdown.change(
fn=lambda v: handle_individual_setting_change("startup_model_type", v, "Startup Model Type"),
inputs=[startup_model_type_dropdown], outputs=[status]
).then( # Chain the update to the preset dropdown
fn=update_startup_preset_dropdown_choices, inputs=[startup_model_type_dropdown], outputs=[startup_preset_name_dropdown])
startup_preset_name_dropdown.change(lambda v: handle_individual_setting_change("startup_preset_name", v, "Startup Preset Name"), inputs=[startup_preset_name_dropdown], outputs=[status])
# --- Event Handlers and Connections (Now correctly indented) ---
# --- Connect Monitoring ---
# Auto-check for current job on page load and job change
def check_for_current_job():
# This function will be called when the interface loads
# It will check if there's a current job in the queue and update the UI
with job_queue.lock:
current_job = job_queue.current_job
if current_job:
# Return all the necessary information to update the preview windows
job_id = current_job.id
result = current_job.result
preview = current_job.progress_data.get('preview') if current_job.progress_data else None
desc = current_job.progress_data.get('desc', '') if current_job.progress_data else ''
html = current_job.progress_data.get('html', '') if current_job.progress_data else ''
# Also trigger the monitor_job function to start monitoring this job
print(f"Auto-check found current job {job_id}, triggering monitor_job")
return job_id, result, preview, preview, desc, html
return None, None, None, None, '', ''
# Auto-check for current job on page load and handle handoff between jobs.
def check_for_current_job_and_monitor():
# This function is now the key to the handoff.
# It finds the current job and returns its ID, which will trigger the monitor.
job_id, result, preview, top_preview, desc, html = check_for_current_job()
# We also need to get fresh stats at the same time.
queue_status_data, queue_stats_text = update_stats()
# Return everything needed to update the UI atomically.
return job_id, result, preview, top_preview, desc, html, queue_status_data, queue_stats_text
# Connect the main process function (wrapper for adding to queue)
def process_with_queue_update(model_type_arg, *args):
# Call update_stats to get both queue_status_data and queue_stats_text
queue_status_data, queue_stats_text = update_stats() # MODIFIED
# Extract all arguments (ensure order matches inputs lists)
# The order here MUST match the order in the `ips` list.
# RT_BORG: Global settings gpu_memory_preservation, mp4_crf, save_metadata removed from direct args.
(input_image_arg,
input_video_arg,
end_frame_image_original_arg,
end_frame_strength_original_arg,
prompt_text_arg,
n_prompt_arg,
seed_arg, # the seed value
randomize_seed_arg, # the boolean value of the checkbox
total_second_length_arg,
latent_window_size_arg,
steps_arg,
cfg_arg,
gs_arg,
rs_arg,
cache_type_arg,
teacache_num_steps_arg,
teacache_rel_l1_thresh_arg,
magcache_threshold_arg,
magcache_max_consecutive_skips_arg,
magcache_retention_ratio_arg,
blend_sections_arg,
latent_type_arg,
clean_up_videos_arg, # UI checkbox from Generate tab
selected_loras_arg,
resolutionW_arg, resolutionH_arg,
combine_with_source_arg,
num_cleaned_frames_arg,
lora_names_states_arg, # This is from lora_names_states (gr.State)
*lora_slider_values_tuple # Remaining args are LoRA slider values
) = args
# DO NOT parse the prompt here. Parsing happens once in the worker.
# Determine the model type to send to the backend
backend_model_type = model_type_arg # model_type_arg is the UI selection
if model_type_arg == "Video with Endframe":
backend_model_type = "Video" # The backend "Video" model_type handles with and without endframe
# Use the appropriate input based on model type
is_ui_video_model = is_video_model(model_type_arg)
input_data = input_video_arg if is_ui_video_model else input_image_arg
# Define actual end_frame params to pass to backend
actual_end_frame_image_for_backend = None
actual_end_frame_strength_for_backend = 1.0 # Default strength
if model_type_arg == "Original with Endframe" or model_type_arg == "F1 with Endframe" or model_type_arg == "Video with Endframe":
actual_end_frame_image_for_backend = end_frame_image_original_arg
actual_end_frame_strength_for_backend = end_frame_strength_original_arg
# Get the input video path for Video model
input_image_path = None
if is_ui_video_model and input_video_arg is not None:
# For Video models, input_video contains the path to the video file
input_image_path = input_video_arg
# Use the current seed value as is for this job
# Call the process function with all arguments
# Pass the backend_model_type and the ORIGINAL prompt_text string to the backend process function
result = process_fn(backend_model_type, input_data, actual_end_frame_image_for_backend, actual_end_frame_strength_for_backend,
prompt_text_arg, n_prompt_arg, seed_arg, total_second_length_arg,
latent_window_size_arg, steps_arg, cfg_arg, gs_arg, rs_arg,
cache_type_arg == 'TeaCache', teacache_num_steps_arg, teacache_rel_l1_thresh_arg,
cache_type_arg == 'MagCache', magcache_threshold_arg, magcache_max_consecutive_skips_arg, magcache_retention_ratio_arg,
blend_sections_arg, latent_type_arg, clean_up_videos_arg, # clean_up_videos_arg is from UI
selected_loras_arg, resolutionW_arg, resolutionH_arg,
input_image_path,
combine_with_source_arg,
num_cleaned_frames_arg,
lora_names_states_arg,
*lora_slider_values_tuple
)
# If randomize_seed is checked, generate a new random seed for the next job
new_seed_value = None
if randomize_seed_arg:
new_seed_value = random.randint(0, 21474)
print(f"Generated new seed for next job: {new_seed_value}")
# Create the button update for start_button WITHOUT interactive=True.
# The interactivity will be set by update_start_button_state later in the chain.
start_button_update_after_add = gr.update(value="🚀 Add to Queue")
# If a job ID was created, automatically start monitoring it and update queue
if result and result[1]: # Check if job_id exists in results
job_id = result[1]
# queue_status_data = update_queue_status_fn() # OLD: update_stats now called earlier
# Call update_stats again AFTER the job is added to get the freshest stats
queue_status_data, queue_stats_text = update_stats()
# Add the new seed value to the results if randomize is checked
if new_seed_value is not None:
# Use result[6] directly for end_button to preserve its value. Add gr.update() for video_input_required_message.
return [result[0], job_id, result[2], result[3], result[4], start_button_update_after_add, result[6], queue_status_data, queue_stats_text, new_seed_value, gr.update()]
else:
# Use result[6] directly for end_button to preserve its value. Add gr.update() for video_input_required_message.
return [result[0], job_id, result[2], result[3], result[4], start_button_update_after_add, result[6], queue_status_data, queue_stats_text, gr.update(), gr.update()]
# If no job ID was created, still return the new seed if randomize is checked
# Also, ensure we return the latest stats even if no job was created (e.g., error during param validation)
queue_status_data, queue_stats_text = update_stats()
if new_seed_value is not None:
# Make sure to preserve the end_button update from result[6]
return [result[0], result[1], result[2], result[3], result[4], start_button_update_after_add, result[6], queue_status_data, queue_stats_text, new_seed_value, gr.update()]
else:
# Make sure to preserve the end_button update from result[6]
return [result[0], result[1], result[2], result[3], result[4], start_button_update_after_add, result[6], queue_status_data, queue_stats_text, gr.update(), gr.update()]
# Custom end process function that ensures the queue is updated and changes button text
def end_process_with_update():
_ = end_process_fn() # Call the original end_process_fn
# Now, get fresh stats for both queue table and toolbar
queue_status_data, queue_stats_text = update_stats()
# Don't try to get the new job ID immediately after cancellation
# The monitor_job function will handle the transition to the next job
# Change the cancel button text to "Cancelling..." and make it non-interactive
# This ensures the button stays in this state until the job is fully cancelled
return queue_status_data, queue_stats_text, gr.update(value="Cancelling...", interactive=False), gr.update(value=None)
# MODIFIED handle_send_video_to_toolbox:
def handle_send_video_to_toolbox(original_path_from_state): # Input is now the original path from gr.State
print(f"Sending selected Outputs' video to Post-processing: {original_path_from_state}")
if original_path_from_state and isinstance(original_path_from_state, str) and os.path.exists(original_path_from_state):
# tb_target_video_input will now process the ORIGINAL path (e.g., "outputs/my_actual_video.mp4").
return gr.update(value=original_path_from_state), gr.update(selected="toolbox_tab")
else:
print(f"No valid video path (from State) found to send. Path: {original_path_from_state}")
return gr.update(), gr.update()
send_to_toolbox_btn.click(
fn=handle_send_video_to_toolbox,
inputs=[selected_original_video_path_state], # INPUT IS NOW THE gr.State holding the ORIGINAL path
outputs=[
tb_target_video_input, # This is tb_input_video_component from toolbox_app.py
main_tabs_component
]
)
# --- Inputs Lists ---
# --- Inputs for all models ---
ips = [
input_image, # Corresponds to input_image_arg
input_video, # Corresponds to input_video_arg
end_frame_image_original, # Corresponds to end_frame_image_original_arg
end_frame_strength_original,# Corresponds to end_frame_strength_original_arg
prompt, # Corresponds to prompt_text_arg
n_prompt, # Corresponds to n_prompt_arg
seed, # Corresponds to seed_arg
randomize_seed, # Corresponds to randomize_seed_arg
total_second_length, # Corresponds to total_second_length_arg
latent_window_size, # Corresponds to latent_window_size_arg
steps, # Corresponds to steps_arg
cfg, # Corresponds to cfg_arg
gs, # Corresponds to gs_arg
rs, # Corresponds to rs_arg
cache_type, # Corresponds to cache_type_arg
teacache_num_steps, # Corresponds to teacache_num_steps_arg
teacache_rel_l1_thresh, # Corresponds to teacache_rel_l1_thresh_arg
magcache_threshold, # Corresponds to magcache_threshold_arg
magcache_max_consecutive_skips, # Corresponds to magcache_max_consecutive_skips_arg
magcache_retention_ratio, # Corresponds to magcache_retention_ratio_arg
blend_sections, # Corresponds to blend_sections_arg
latent_type, # Corresponds to latent_type_arg
clean_up_videos, # Corresponds to clean_up_videos_arg (UI checkbox)
lora_selector, # Corresponds to selected_loras_arg
resolutionW, # Corresponds to resolutionW_arg
resolutionH, # Corresponds to resolutionH_arg
combine_with_source, # Corresponds to combine_with_source_arg
num_cleaned_frames, # Corresponds to num_cleaned_frames_arg
lora_names_states # Corresponds to lora_names_states_arg
]
# Add LoRA sliders to the input list
ips.extend([lora_sliders[lora] for lora in lora_names])
# --- Connect Buttons ---
def handle_start_button(selected_model, *args):
# For other model types, use the regular process function
return process_with_queue_update(selected_model, *args)
def handle_batch_add_to_queue(*args):
# The last argument will be the list of files from batch_input_images
batch_files = args[-1]
if not batch_files or not isinstance(batch_files, list):
print("No batch images provided.")
return
print(f"Starting batch processing for {len(batch_files)} images.")
# Reconstruct the arguments for the single process function, excluding the batch files list
single_job_args = list(args[:-1])
# The first argument to process_with_queue_update is model_type
model_type_arg = single_job_args.pop(0)
# Keep track of the seed
current_seed = single_job_args[6] # seed is the 7th element in the ips list
randomize_seed_arg = single_job_args[7] # randomize_seed is the 8th
for image_path in batch_files:
# --- FIX IS HERE ---
# Load the image from the path into a NumPy array
try:
pil_image = Image.open(image_path).convert("RGB")
numpy_image = np.array(pil_image)
except Exception as e:
print(f"Error loading batch image {image_path}: {e}. Skipping.")
continue
# --- END OF FIX ---
# Replace the single input_image argument with the loaded NumPy image
current_job_args = single_job_args[:]
current_job_args[0] = numpy_image # Use the loaded numpy_image
current_job_args[6] = current_seed # Set the seed for the current job
# Call the original processing function with the modified arguments
process_with_queue_update(model_type_arg, *current_job_args)
# If randomize seed is checked, generate a new one for the next image
if randomize_seed_arg:
current_seed = random.randint(0, 21474)
print("Batch processing complete. All jobs added to the queue.")
# Validation ensures the start button is only enabled when appropriate
def update_start_button_state(*args):
"""
Validation fails if a video model is selected and no input video is provided.
Updates the start button interactivity and validation message visibility.
Handles variable inputs from different Gradio event chains.
"""
# The required values are the last two arguments provided by the Gradio event
if len(args) >= 2:
selected_model = args[-2]
input_video_value = args[-1]
else:
# Fallback or error handling if not enough arguments are received
# This might happen if the event is triggered in an unexpected way
print(f"Warning: update_start_button_state received {len(args)} args, expected at least 2.")
# Default to a safe state (button disabled)
return gr.Button(value="❌ Error", interactive=False), gr.update(visible=True)
video_provided = input_video_value is not None
if is_video_model(selected_model) and not video_provided:
# Video model selected, but no video provided
return gr.Button(value="❌ Missing Video", interactive=False), gr.update(visible=True)
else:
# Either not a video model, or video model selected and video provided
return gr.update(value="🚀 Add to Queue", interactive=True), gr.update(visible=False)
# Function to update button state before processing
def update_button_before_processing(selected_model, *args):
# First update the button to show "Adding..." and disable it
# Also return current stats so they don't get blanked out during the "Adding..." phase
qs_data, qs_text = update_stats()
return gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update(value="⏳ Adding...", interactive=False), gr.update(), qs_data, qs_text, gr.update(), gr.update() # Added update for video_input_required_message
# Connect the start button to first update its state
start_button.click(
fn=update_button_before_processing,
inputs=[model_type] + ips,
outputs=[result_video, current_job_id, preview_image, top_preview_image, progress_desc, progress_bar, start_button, end_button, queue_status, queue_stats_display, seed, video_input_required_message]
).then(
# Then process the job
fn=handle_start_button,
inputs=[model_type] + ips,
outputs=[result_video, current_job_id, preview_image, progress_desc, progress_bar, start_button, end_button, queue_status, queue_stats_display, seed, video_input_required_message] # Added video_input_required_message
).then( # Ensure validation is re-checked after job processing completes
fn=update_start_button_state,
inputs=[model_type, input_video], # Current values of model_type and input_video
outputs=[start_button, video_input_required_message]
)
def show_batch_gallery(files):
return gr.update(value=files, visible=True) if files else gr.update(visible=False)
batch_input_images.change(
fn=show_batch_gallery,
inputs=[batch_input_images],
outputs=[batch_input_gallery]
)
# We need to gather all the same inputs as the single 'Add to Queue' button, plus the new file input
batch_ips = [model_type] + ips + [batch_input_images]
add_batch_to_queue_btn.click(
fn=handle_batch_add_to_queue,
inputs=batch_ips,
outputs=None # No direct output updates from this button
).then(
fn=update_stats, # Refresh the queue stats in the UI
inputs=None,
outputs=[queue_status, queue_stats_display]
).then(
# This new block checks for a running job and updates the monitor UI
fn=check_for_current_job,
inputs=None,
outputs=[current_job_id, result_video, preview_image, top_preview_image, progress_desc, progress_bar]
).then(
# NEW: Update latents display layout after loading queue to ensure correct visibility
fn=create_latents_layout_update,
inputs=None,
outputs=[top_preview_row, preview_image]
)
# --- START OF REFACTORED XY PLOT EVENT WIRING ---
# Get the process button from the created components
xy_plot_process_btn = xy_plot_components["process_btn"]
# Prepare the process function with its static dependencies (job_queue, settings)
fn_xy_process_with_deps = functools.partial(xy_plot_process, job_queue, settings)
# Construct the full list of inputs for the click handler in the correct order
c = xy_plot_components
xy_plot_input_components = [
c["model_type"], c["input_image"], c["end_frame_image_original"],
c["end_frame_strength_original"], c["latent_type"], c["prompt"],
c["blend_sections"], c["steps"], c["total_second_length"],
resolutionW, resolutionH, # The components from the main UI
c["seed"], c["randomize_seed"],
c["use_teacache"], c["teacache_num_steps"], c["teacache_rel_l1_thresh"],
c["use_magcache"], c["magcache_threshold"], c["magcache_max_consecutive_skips"], c["magcache_retention_ratio"],
c["latent_window_size"], c["cfg"], c["gs"], c["rs"],
c["gpu_memory_preservation"], c["mp4_crf"],
c["axis_x_switch"], c["axis_x_value_text"], c["axis_x_value_dropdown"],
c["axis_y_switch"], c["axis_y_value_text"], c["axis_y_value_dropdown"],
c["axis_z_switch"], c["axis_z_value_text"], c["axis_z_value_dropdown"],
c["lora_selector"]
]
# LoRA sliders are in a dictionary, so we add their values to the list
xy_plot_input_components.extend(c["lora_sliders"].values())
# Wire the click handler for the XY Plot button
xy_plot_process_btn.click(
fn=fn_xy_process_with_deps,
inputs=xy_plot_input_components,
outputs=[xy_plot_status, xy_plot_output]
).then(
fn=update_stats,
inputs=None,
outputs=[queue_status, queue_stats_display]
).then(
fn=check_for_current_job,
inputs=None,
outputs=[current_job_id, result_video, preview_image, top_preview_image, progress_desc, progress_bar]
).then(
# NEW: Update latents display layout after XY plot to ensure correct visibility
fn=create_latents_layout_update,
inputs=None,
outputs=[top_preview_row, preview_image]
)
# --- END OF REFACTORED XY PLOT EVENT WIRING ---
# MODIFIED: on_model_type_change to handle new "XY Plot" option
def on_model_type_change(selected_model):
is_xy_plot = selected_model == "XY Plot"
is_ui_video_model_flag = is_video_model(selected_model)
shows_end_frame = selected_model in ["Original with Endframe", "Video with Endframe"]
return (
gr.update(visible=not is_xy_plot), # standard_generation_group
gr.update(visible=is_xy_plot), # xy_group
gr.update(visible=not is_xy_plot and not is_ui_video_model_flag), # image_input_group
gr.update(visible=not is_xy_plot and is_ui_video_model_flag), # video_input_group
gr.update(visible=not is_xy_plot and shows_end_frame), # end_frame_group_original
gr.update(visible=not is_xy_plot and shows_end_frame), # end_frame_slider_group
gr.update(visible=not is_xy_plot), # start_button
gr.update(visible=is_xy_plot) # xy_plot_process_btn
)
# Model change listener
model_type.change(
fn=on_model_type_change,
inputs=model_type,
outputs=[
standard_generation_group,
xy_group,
image_input_group,
video_input_group,
end_frame_group_original,
end_frame_slider_group,
start_button,
xy_plot_process_btn # This is the button returned from the dictionary
]
).then( # Also trigger validation after model type changes
fn=update_start_button_state,
inputs=[model_type, input_video],
outputs=[start_button, video_input_required_message]
)
# Connect input_video change to the validation function
input_video.change(
fn=update_start_button_state,
inputs=[model_type, input_video],
outputs=[start_button, video_input_required_message]
)
# Also trigger validation when video is cleared
input_video.clear(
fn=update_start_button_state,
inputs=[model_type, input_video],
outputs=[start_button, video_input_required_message]
)
# Auto-monitor the current job when job_id changes
current_job_id.change(
fn=monitor_fn,
inputs=[current_job_id],
outputs=[result_video, preview_image, top_preview_image, progress_desc, progress_bar, start_button, end_button]
).then(
fn=update_stats, # When a monitor finishes, always update the stats.
inputs=None,
outputs=[queue_status, queue_stats_display]
).then( # re-validate button state
fn=update_start_button_state,
inputs=[model_type, input_video],
outputs=[start_button, video_input_required_message]
).then(
# NEW: Update latents display layout after monitoring to ensure correct visibility
fn=create_latents_layout_update,
inputs=None,
outputs=[top_preview_row, preview_image]
)
# The "end_button" (Cancel Job) is the trigger for the next job's monitor.
# When a job is cancelled, we check for the next one.
end_button.click(
fn=end_process_with_update,
outputs=[queue_status, queue_stats_display, end_button, current_job_id]
).then(
fn=check_for_current_job_and_monitor,
inputs=[],
outputs=[current_job_id, result_video, preview_image, top_preview_image, progress_desc, progress_bar, queue_status, queue_stats_display]
).then(
# NEW: Update latents display layout after job handoff to ensure correct visibility
fn=create_latents_layout_update,
inputs=None,
outputs=[top_preview_row, preview_image]
)
load_queue_button.click(
fn=load_queue_from_json,
inputs=[],
outputs=[queue_status, queue_stats_display]
).then( # ADD THIS .then() CLAUSE
fn=check_for_current_job,
inputs=[],
outputs=[current_job_id, result_video, preview_image, top_preview_image, progress_desc, progress_bar]
).then(
# NEW: Update latents display layout after loading queue to ensure correct visibility
fn=create_latents_layout_update,
inputs=None,
outputs=[top_preview_row, preview_image]
)
import_queue_file.change(
fn=import_queue_from_file,
inputs=[import_queue_file],
outputs=[queue_status, queue_stats_display]
).then( # ADD THIS .then() CLAUSE
fn=check_for_current_job,
inputs=[],
outputs=[current_job_id, result_video, preview_image, top_preview_image, progress_desc, progress_bar]
).then(
# NEW: Update latents display layout after importing queue to ensure correct visibility
fn=create_latents_layout_update,
inputs=None,
outputs=[top_preview_row, preview_image]
)
# --- Connect Queue Refresh ---
# The update_stats function is now defined much earlier.
# REMOVED: refresh_stats_btn.click - Toolbar refresh button is no longer needed
# refresh_stats_btn.click(
# fn=update_stats,
# inputs=None,
# outputs=[queue_status, queue_stats_display]
# )
# Set up auto-refresh for queue status
# Instead of using a timer with 'every' parameter, we'll use the queue refresh button
# and rely on manual refreshes. The user can click the refresh button in the toolbar
# to update the stats.
# --- Connect LoRA UI ---
# Function to update slider visibility based on selection
def update_lora_sliders(selected_loras):
updates = []
# Suppress dummy LoRA from workaround for the single lora bug.
# Filter out the dummy LoRA for display purposes in the dropdown
actual_selected_loras_for_display = [lora for lora in selected_loras if lora != DUMMY_LORA_NAME]
updates.append(gr.update(value=actual_selected_loras_for_display)) # First update is for the dropdown itself
# Need to handle potential missing keys if lora_names changes dynamically
# lora_names is from the create_interface scope
for lora_name_key in lora_names: # Iterate using lora_names to maintain order
if lora_name_key == DUMMY_LORA_NAME: # Check for dummy LoRA
updates.append(gr.update(visible=False))
else:
# Visibility of sliders should be based on actual_selected_loras_for_display
updates.append(gr.update(visible=(lora_name_key in actual_selected_loras_for_display)))
return updates # This list will be correctly ordered
# Connect the dropdown to the sliders
lora_selector.change(
fn=update_lora_sliders,
inputs=[lora_selector],
outputs=[lora_selector] + [lora_sliders[lora] for lora in lora_names if lora in lora_sliders]
)
def apply_preset(preset_name, model_type):
if not preset_name:
# Create a list of empty updates matching the number of components
return [gr.update()] * len(ui_components)
with open(PRESET_FILE, 'r') as f:
data = json.load(f)
preset = data.get(model_type, {}).get(preset_name, {})
# Initialize updates for all components
updates = {key: gr.update() for key in ui_components.keys()}
# Update components based on the preset
for key, value in preset.items():
if key in updates:
updates[key] = gr.update(value=value)
# Handle LoRA sliders specifically
if 'lora_values' in preset and isinstance(preset['lora_values'], dict):
lora_values_dict = preset['lora_values']
for lora_name, lora_value in lora_values_dict.items():
if lora_name in updates:
updates[lora_name] = gr.update(value=lora_value)
# Convert the dictionary of updates to a list in the correct order
return [updates[key] for key in ui_components.keys()]
def save_preset(preset_name, model_type, *args):
if not preset_name:
return gr.update()
# Ensure the directory exists
os.makedirs(os.path.dirname(PRESET_FILE), exist_ok=True)
if not os.path.exists(PRESET_FILE):
with open(PRESET_FILE, 'w') as f:
json.dump({}, f)
with open(PRESET_FILE, 'r') as f:
data = json.load(f)
if model_type not in data:
data[model_type] = {}
keys = list(ui_components.keys())
# Create a dictionary from the passed arguments
args_dict = {keys[i]: args[i] for i in range(len(keys))}
# Build the preset data from the arguments dictionary
preset_data = {key: args_dict[key] for key in ui_components.keys() if key not in lora_sliders}
# Handle LoRA values separately
selected_loras = args_dict.get("lora_selector", [])
lora_values = {}
for lora_name in selected_loras:
if lora_name in args_dict:
lora_values[lora_name] = args_dict[lora_name]
preset_data['lora_values'] = lora_values
# Remove individual lora sliders from the top-level preset data
for lora_name in lora_sliders:
if lora_name in preset_data:
del preset_data[lora_name]
data[model_type][preset_name] = preset_data
with open(PRESET_FILE, 'w') as f:
json.dump(data, f, indent=2)
return gr.update(choices=load_presets(model_type), value=preset_name)
def delete_preset(preset_name, model_type):
if not preset_name:
return gr.update(), gr.update(visible=True), gr.update(visible=False)
with open(PRESET_FILE, 'r') as f:
data = json.load(f)
if model_type in data and preset_name in data[model_type]:
del data[model_type][preset_name]
with open(PRESET_FILE, 'w') as f:
json.dump(data, f, indent=2)
return gr.update(choices=load_presets(model_type), value=None), gr.update(visible=True), gr.update(visible=False)
# --- Connect Preset UI ---
# Without this refresh, if you define a new preset for the Startup Model Type, and then try to select it in settings, it won't show up.
def refresh_settings_tab_startup_presets_if_needed(generate_tab_model_type_value, settings_tab_startup_model_type_value):
# generate_tab_model_type_value is the model for which a preset was just saved
# settings_tab_startup_model_type_value is the current selection in the startup model dropdown on settings tab
if generate_tab_model_type_value == settings_tab_startup_model_type_value and settings_tab_startup_model_type_value != "None":
return update_startup_preset_dropdown_choices(settings_tab_startup_model_type_value)
return gr.update()
ui_components = {
# Prompts
"prompt": prompt,
"n_prompt": n_prompt,
"blend_sections": blend_sections,
# Basic Params
"steps": steps,
"total_second_length": total_second_length,
"resolutionW": resolutionW,
"resolutionH": resolutionH,
"seed": seed,
"randomize_seed": randomize_seed,
# Advanced Params
"gs": gs,
"cfg": cfg,
"rs": rs,
"latent_window_size": latent_window_size,
# Cache type (Mag/Tea/None)
"cache_type": cache_type,
# TeaCache
"teacache_num_steps": teacache_num_steps,
"teacache_rel_l1_thresh": teacache_rel_l1_thresh,
# MagCache
"magcache_threshold": magcache_threshold,
"magcache_max_consecutive_skips": magcache_max_consecutive_skips,
"magcache_retention_ratio": magcache_retention_ratio,
# Input Options
"latent_type": latent_type,
"end_frame_strength_original": end_frame_strength_original,
# Video Specific
"combine_with_source": combine_with_source,
"num_cleaned_frames": num_cleaned_frames,
# LoRAs
"lora_selector": lora_selector,
**lora_sliders
}
model_type.change(
fn=lambda mt: (gr.update(choices=load_presets(mt)), gr.update(label=f"{mt} Presets")),
inputs=[model_type],
outputs=[preset_dropdown, preset_accordion]
)
preset_dropdown.select(
fn=apply_preset,
inputs=[preset_dropdown, model_type],
outputs=list(ui_components.values())
).then(
lambda name: name,
inputs=[preset_dropdown],
outputs=[preset_name_textbox]
)
save_preset_button.click(
fn=save_preset,
inputs=[preset_name_textbox, model_type, *list(ui_components.values())],
outputs=[preset_dropdown] # preset_dropdown is on Generate tab
).then(
fn=refresh_settings_tab_startup_presets_if_needed,
inputs=[model_type, startup_model_type_dropdown], # model_type (Generate tab), startup_model_type_dropdown (Settings tab)
outputs=[startup_preset_name_dropdown] # startup_preset_name_dropdown (Settings tab)
)
def show_delete_confirmation():
return gr.update(visible=False), gr.update(visible=True)
def hide_delete_confirmation():
return gr.update(visible=True), gr.update(visible=False)
delete_preset_button.click(
fn=show_delete_confirmation,
outputs=[save_preset_button, confirm_delete_row]
)
confirm_delete_no_btn.click(
fn=hide_delete_confirmation,
outputs=[save_preset_button, confirm_delete_row]
)
confirm_delete_yes_btn.click(
fn=delete_preset,
inputs=[preset_dropdown, model_type],
outputs=[preset_dropdown, save_preset_button, confirm_delete_row]
)
# --- Definition of apply_startup_settings (AFTER ui_components and apply_preset are defined) ---
# This function needs access to `settings`, `model_type` (Generate tab Radio),
# `preset_dropdown` (Generate tab Dropdown), `preset_name_textbox` (Generate tab Textbox),
# `ui_components` (dict of all other UI elements), `load_presets`, and `apply_preset`.
# All these are available in the scope of `create_interface`.
def apply_startup_settings():
startup_model_val = settings.get("startup_model_type", "None")
startup_preset_val = settings.get("startup_preset_name", None)
# Default updates (no change)
model_type_update = gr.update()
preset_dropdown_update = gr.update()
preset_name_textbox_update = gr.update()
# ui_components is now defined
ui_components_updates_list = [gr.update() for _ in ui_components]
if startup_model_val and startup_model_val != "None":
model_type_update = gr.update(value=startup_model_val)
presets_for_startup_model = load_presets(startup_model_val) # load_presets is defined earlier
preset_dropdown_update = gr.update(choices=presets_for_startup_model)
preset_name_textbox_update = gr.update(value="")
if startup_preset_val and startup_preset_val in presets_for_startup_model:
preset_dropdown_update = gr.update(choices=presets_for_startup_model, value=startup_preset_val)
preset_name_textbox_update = gr.update(value=startup_preset_val)
# apply_preset is now defined
ui_components_updates_list = apply_preset(startup_preset_val, startup_model_val)
# NEW: Ensure latents_display_top checkbox reflects the current setting
latents_display_top_update = gr.update(value=get_latents_display_top())
return tuple([model_type_update, preset_dropdown_update, preset_name_textbox_update] + ui_components_updates_list + [latents_display_top_update])
# --- Auto-refresh for Toolbar System Stats Monitor (Timer) ---
main_toolbar_system_stats_timer = gr.Timer(2, active=True)
main_toolbar_system_stats_timer.tick(
fn=tb_get_formatted_toolbar_stats, # Function imported from toolbox_app.py
inputs=None,
outputs=[ # Target the Textbox components
toolbar_ram_display_component,
toolbar_vram_display_component,
toolbar_gpu_display_component
]
)
# --- Connect Metadata Loading ---
# Function to load metadata from JSON file
def load_metadata_from_json(json_path):
# Define the total number of output components to handle errors gracefully
num_outputs = 20 + len(lora_sliders)
if not json_path:
# Return empty updates for all components if no file is provided
return [gr.update()] * num_outputs
try:
with open(json_path, 'r') as f:
metadata = json.load(f)
# Extract values from metadata with defaults
prompt_val = metadata.get('prompt')
n_prompt_val = metadata.get('negative_prompt')
seed_val = metadata.get('seed')
steps_val = metadata.get('steps')
total_second_length_val = metadata.get('total_second_length')
end_frame_strength_val = metadata.get('end_frame_strength')
model_type_val = metadata.get('model_type')
lora_weights = metadata.get('loras', {})
latent_window_size_val = metadata.get('latent_window_size')
resolutionW_val = metadata.get('resolutionW')
resolutionH_val = metadata.get('resolutionH')
blend_sections_val = metadata.get('blend_sections')
# Determine cache_type from metadata, with fallback for older formats
cache_type_val = metadata.get('cache_type')
if cache_type_val is None:
use_magcache = metadata.get('use_magcache', False)
use_teacache = metadata.get('use_teacache', False)
if use_magcache:
cache_type_val = "MagCache"
elif use_teacache:
cache_type_val = "TeaCache"
else:
cache_type_val = "None"
magcache_threshold_val = metadata.get('magcache_threshold')
magcache_max_consecutive_skips_val = metadata.get('magcache_max_consecutive_skips')
magcache_retention_ratio_val = metadata.get('magcache_retention_ratio')
teacache_num_steps_val = metadata.get('teacache_num_steps')
teacache_rel_l1_thresh_val = metadata.get('teacache_rel_l1_thresh')
latent_type_val = metadata.get('latent_type')
combine_with_source_val = metadata.get('combine_with_source')
# Get the names of the selected LoRAs from the metadata
selected_lora_names = list(lora_weights.keys())
print(f"Loaded metadata from JSON: {json_path}")
print(f"Model Type: {model_type_val}, Prompt: {prompt_val}, Seed: {seed_val}, LoRAs: {selected_lora_names}")
# Create a list of UI updates
updates = [
gr.update(value=prompt_val) if prompt_val is not None else gr.update(),
gr.update(value=n_prompt_val) if n_prompt_val is not None else gr.update(),
gr.update(value=seed_val) if seed_val is not None else gr.update(),
gr.update(value=steps_val) if steps_val is not None else gr.update(),
gr.update(value=total_second_length_val) if total_second_length_val is not None else gr.update(),
gr.update(value=end_frame_strength_val) if end_frame_strength_val is not None else gr.update(),
gr.update(value=model_type_val) if model_type_val else gr.update(),
gr.update(value=selected_lora_names) if selected_lora_names else gr.update(),
gr.update(value=latent_window_size_val) if latent_window_size_val is not None else gr.update(),
gr.update(value=resolutionW_val) if resolutionW_val is not None else gr.update(),
gr.update(value=resolutionH_val) if resolutionH_val is not None else gr.update(),
gr.update(value=blend_sections_val) if blend_sections_val is not None else gr.update(),
gr.update(value=cache_type_val),
gr.update(value=magcache_threshold_val),
gr.update(value=magcache_max_consecutive_skips_val),
gr.update(value=magcache_retention_ratio_val),
gr.update(value=teacache_num_steps_val) if teacache_num_steps_val is not None else gr.update(),
gr.update(value=teacache_rel_l1_thresh_val) if teacache_rel_l1_thresh_val is not None else gr.update(),
gr.update(value=latent_type_val) if latent_type_val else gr.update(),
gr.update(value=combine_with_source_val) if combine_with_source_val else gr.update(),
]
# Update LoRA sliders based on loaded weights
for lora in lora_names:
if lora in lora_weights:
updates.append(gr.update(value=lora_weights[lora], visible=True))
else:
# Hide sliders for LoRAs not in the metadata
updates.append(gr.update(visible=False))
return updates
except Exception as e:
print(f"Error loading metadata: {e}")
import traceback
traceback.print_exc()
# Return empty updates for all components on error
return [gr.update()] * num_outputs
# Connect JSON metadata loader for Original tab
json_upload.change(
fn=load_metadata_from_json,
inputs=[json_upload],
outputs=[
prompt,
n_prompt,
seed,
steps,
total_second_length,
end_frame_strength_original,
model_type,
lora_selector,
latent_window_size,
resolutionW,
resolutionH,
blend_sections,
cache_type,
magcache_threshold,
magcache_max_consecutive_skips,
magcache_retention_ratio,
teacache_num_steps,
teacache_rel_l1_thresh,
latent_type,
combine_with_source
] + [lora_sliders[lora] for lora in lora_names]
)
# --- Helper Functions (defined within create_interface scope if needed by handlers) ---
# Function to get queue statistics
def get_queue_stats():
try:
# Get all jobs from the queue
jobs = job_queue.get_all_jobs()
# Count jobs by status
status_counts = {
"QUEUED": 0,
"RUNNING": 0,
"COMPLETED": 0,
"FAILED": 0,
"CANCELLED": 0
}
for job in jobs:
if hasattr(job, 'status'):
status = str(job.status) # Use str() for safety
if status in status_counts:
status_counts[status] += 1
# Format the display text
stats_text = f"Queue: {status_counts['QUEUED']} | Running: {status_counts['RUNNING']} | Completed: {status_counts['COMPLETED']} | Failed: {status_counts['FAILED']} | Cancelled: {status_counts['CANCELLED']}"
return f"<p style='margin:0;color:white;'>{stats_text}</p>"
except Exception as e:
print(f"Error getting queue stats: {e}")
return "<p style='margin:0;color:white;'>Error loading queue stats</p>"
# Add footer with social links
with gr.Row(elem_id="footer"):
with gr.Column(scale=1):
gr.HTML(f"""
<div style="text-align: center; padding: 20px; color: #666;">
<div style="margin-top: 10px;">
<span class="footer-version" style="margin: 0 10px; color: #666;">{APP_VERSION_DISPLAY}</span>
<a href="https://patreon.com/Colinu" target="_blank" style="margin: 0 10px; color: #666; text-decoration: none;" class="footer-patreon">
<i class="fab fa-patreon"></i>Support on Patreon
</a>
<a href="https://discord.gg/MtuM7gFJ3V" target="_blank" style="margin: 0 10px; color: #666; text-decoration: none;">
<i class="fab fa-discord"></i> Discord
</a>
<a href="https://github.com/colinurbs/FramePack-Studio" target="_blank" style="margin: 0 10px; color: #666; text-decoration: none;">
<i class="fab fa-github"></i> GitHub
</a>
</div>
</div>
""")
# Add CSS for footer
# gr.HTML("""
# <script>
# (function() {
# "use strict";
# console.log("Stat Bar Script: Initializing");
# const statConfig = {
# ram: { selector: '#toolbar-ram-stat', regex: /\((\d+)%\)/, valueIndex: 1, isRawPercentage: true },
# vram: { selector: '#toolbar-vram-stat', regex: /VRAM: (\d+\.?\d+)\/(\d+\.?\d+)GB/, usedIndex: 1, totalIndex: 2, isRawPercentage: false },
# gpu: { selector: '#toolbar-gpu-stat', regex: /GPU: \d+°C (\d+)%/, valueIndex: 1, isRawPercentage: true }
# };
# function setBarPercentage(statElement, percentage) {
# if (!statElement) {
# console.warn("Stat Bar Script: setBarPercentage called with no element.");
# return;
# }
# let bar = statElement.querySelector('.stat-bar');
# if (!bar) {
# console.log("Stat Bar Script: Creating .stat-bar for", statElement.id);
# bar = document.createElement('div');
# bar.className = 'stat-bar';
# statElement.insertBefore(bar, statElement.firstChild);
# }
# const clampedPercentage = Math.min(100, Math.max(0, parseFloat(percentage)));
# statElement.style.setProperty('--stat-percentage', clampedPercentage + '%');
# // console.log("Stat Bar Script: Updated", statElement.id, "to", clampedPercentage + "%");
# }
# function updateSingleStatVisual(key, config) {
# try {
# const container = document.querySelector(config.selector);
# if (!container) {
# // console.warn("Stat Bar Script: Container not found for", key, config.selector);
# return false; // Element not ready
# }
# const textarea = container.querySelector('textarea');
# if (!textarea) {
# // console.warn("Stat Bar Script: Textarea not found for", key);
# return false; // Element not ready
# }
# const textValue = textarea.value;
# if (textValue === "RAM: N/A" || textValue === "VRAM: N/A" || textValue === "GPU: N/A") {
# setBarPercentage(container, 0); // Set to 0 if N/A
# return true;
# }
# const match = textValue.match(config.regex);
# if (match) {
# let percentage = 0;
# if (config.isRawPercentage) {
# percentage = parseInt(match[config.valueIndex]);
# } else { // VRAM case
# const used = parseFloat(match[config.usedIndex]);
# const total = parseFloat(match[config.totalIndex]);
# percentage = (total > 0) ? (used / total) * 100 : 0;
# }
# setBarPercentage(container, percentage);
# } else {
# // console.warn("Stat Bar Script: Regex mismatch for", key, "-", textValue);
# setBarPercentage(container, 0); // Default to 0 on mismatch after initial load
# }
# return true; // Processed or N/A
# } catch (error) {
# console.error("Stat Bar Script: Error updating visual for", key, error);
# return true; // Assume processed to avoid retry loops on error
# }
# }
# function updateAllStatVisuals() {
# let allReady = true;
# for (const key in statConfig) {
# if (!updateSingleStatVisual(key, statConfig[key])) {
# allReady = false;
# }
# }
# return allReady;
# }
# function initStatBars() {
# console.log("Stat Bar Script: initStatBars called");
# if (updateAllStatVisuals()) {
# console.log("Stat Bar Script: All stats initialized. Setting up MutationObserver.");
# setupMutationObservers();
# } else {
# console.log("Stat Bar Script: Elements not ready, retrying init in 250ms.");
# setTimeout(initStatBars, 250); // Retry if not all elements were ready
# }
# }
# function setupMutationObservers() {
# const observer = new MutationObserver((mutationsList) => {
# // Use a Set to avoid redundant updates if multiple mutations point to the same stat
# const changedStats = new Set();
# for (const mutation of mutationsList) {
# let targetElement = mutation.target;
# // Traverse up to find the .toolbar-stat-textbox parent if mutation is deep
# while(targetElement && !targetElement.matches('.toolbar-stat-textbox')) {
# targetElement = targetElement.parentElement;
# }
# if (targetElement && targetElement.matches('.toolbar-stat-textbox')) {
# for (const key in statConfig) {
# if (targetElement.id === statConfig[key].selector.substring(1)) {
# changedStats.add(key);
# break;
# }
# }
# }
# }
# if (changedStats.size > 0) {
# // console.log("Stat Bar Script: MutationObserver detected changes for:", Array.from(changedStats));
# changedStats.forEach(key => updateSingleStatVisual(key, statConfig[key]));
# }
# });
# for (const key in statConfig) {
# const container = document.querySelector(statConfig[key].selector);
# if (container) {
# // Observe the container for changes to its children (like textarea value)
# // and the textarea itself if it exists.
# observer.observe(container, { childList: true, subtree: true, characterData: true });
# console.log("Stat Bar Script: Observer attached to", container.id);
# } else {
# console.warn("Stat Bar Script: Could not attach observer, container not found for", key);
# }
# }
# }
# // More robust DOM ready check
# if (document.readyState === "complete" || (document.readyState !== "loading" && !document.documentElement.doScroll)) {
# console.log("Stat Bar Script: DOM already ready.");
# initStatBars();
# } else {
# document.addEventListener("DOMContentLoaded", () => {
# console.log("Stat Bar Script: DOMContentLoaded event.");
# initStatBars();
# });
# }
# // Fallback for Gradio's dynamic loading, if DOMContentLoaded isn't enough
# window.addEventListener('gradio.rendered', () => {
# console.log('Stat Bar Script: Gradio rendered event detected.');
# initStatBars();
# });
# })();
# </script>
# """)
# --- Function to update latents display layout on interface load ---
def update_latents_layout_on_load():
"""Update latents display layout based on saved setting when interface loads"""
return create_latents_layout_update()
# Connect the auto-check function to the interface load event
block.load(
fn=check_for_current_job_and_monitor, # Use the new combined function
inputs=[],
outputs=[current_job_id, result_video, preview_image, top_preview_image, progress_desc, progress_bar, queue_status, queue_stats_display]
).then(
fn=apply_startup_settings, # apply_startup_settings is now defined
inputs=None,
outputs=[model_type, preset_dropdown, preset_name_textbox] + list(ui_components.values()) + [latents_display_top] # ui_components is now defined
).then(
fn=update_start_button_state, # Ensure button state is correct after startup settings
inputs=[model_type, input_video],
outputs=[start_button, video_input_required_message]
).then(
# NEW: Update latents display layout based on saved setting
fn=create_latents_layout_update,
inputs=None,
outputs=[top_preview_row, preview_image]
)
# --- Prompt Enhancer Connection ---
def handle_enhance_prompt(current_prompt_text):
"""Calls the LLM enhancer and returns the updated text."""
if not current_prompt_text:
return ""
print("UI: Enhance button clicked. Sending prompt to enhancer.")
enhanced_text = enhance_prompt(current_prompt_text)
print(f"UI: Received enhanced prompt: {enhanced_text}")
return gr.update(value=enhanced_text)
enhance_prompt_btn.click(
fn=handle_enhance_prompt,
inputs=[prompt],
outputs=[prompt]
)
# --- Captioner Connection ---
def handle_caption(input_image, prompt):
"""Calls the LLM enhancer and returns the updated text."""
if input_image is None:
return prompt # Return current prompt if no image is provided
caption_text = caption_image(input_image)
print(f"UI: Received caption: {caption_text}")
return gr.update(value=caption_text)
caption_btn.click(
fn=handle_caption,
inputs=[input_image, prompt],
outputs=[prompt]
)
return block
# --- Top-level Helper Functions (Used by Gradio callbacks, must be defined outside create_interface) ---
def format_queue_status(jobs):
"""Format job data for display in the queue status table"""
rows = []
for job in jobs:
created = time.strftime('%H:%M:%S', time.localtime(job.created_at)) if job.created_at else ""
started = time.strftime('%H:%M:%S', time.localtime(job.started_at)) if job.started_at else ""
completed = time.strftime('%H:%M:%S', time.localtime(job.completed_at)) if job.completed_at else ""
# Calculate elapsed time
elapsed_time = ""
if job.started_at:
if job.completed_at:
start_datetime = datetime.datetime.fromtimestamp(job.started_at)
complete_datetime = datetime.datetime.fromtimestamp(job.completed_at)
elapsed_seconds = (complete_datetime - start_datetime).total_seconds()
elapsed_time = f"{elapsed_seconds:.2f}s"
else:
# For running jobs, calculate elapsed time from now
start_datetime = datetime.datetime.fromtimestamp(job.started_at)
current_datetime = datetime.datetime.now()
elapsed_seconds = (current_datetime - start_datetime).total_seconds()
elapsed_time = f"{elapsed_seconds:.2f}s (running)"
# Get generation type from job data
generation_type = getattr(job, 'generation_type', 'Original')
# Get thumbnail from job data and format it as HTML for display
thumbnail = getattr(job, 'thumbnail', None)
thumbnail_html = f'<img src="{thumbnail}" width="64" height="64" style="object-fit: contain;">' if thumbnail else ""
rows.append([
job.id[:6] + '...',
generation_type,
job.status.value,
created,
started,
completed,
elapsed_time,
thumbnail_html # Add formatted thumbnail HTML to row data
])
return rows
# Create the queue status update function (wrapper around format_queue_status)
def update_queue_status_with_thumbnails(): # Function name is now slightly misleading, but keep for now to avoid breaking clicks
# This function is likely called by the refresh button and potentially the timer
# It needs access to the job_queue object
# Assuming job_queue is accessible globally or passed appropriately
# For now, let's assume it's globally accessible as defined in studio.py
# If not, this needs adjustment based on how job_queue is managed.
try:
# Need access to the global job_queue instance from studio.py
# This might require restructuring or passing job_queue differently.
# For now, assuming it's accessible (this might fail if run standalone)
from __main__ import job_queue # Attempt to import from main script scope
jobs = job_queue.get_all_jobs()
for job in jobs:
if job.status == JobStatus.PENDING:
job.queue_position = job_queue.get_queue_position(job.id)
if job_queue.current_job:
job_queue.current_job.status = JobStatus.RUNNING
return format_queue_status(jobs)
except ImportError:
print("Error: Could not import job_queue. Queue status update might fail.")
return [] # Return empty list on error
except Exception as e:
print(f"Error updating queue status: {e}")
return []
|