File size: 64,907 Bytes
05fcd0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
import os
import json
import time
import traceback
import einops
import numpy as np
import torch
import datetime
from PIL import Image
from PIL.PngImagePlugin import PngInfo
from diffusers_helper.models.mag_cache import MagCache
from diffusers_helper.utils import save_bcthw_as_mp4, generate_timestamp, resize_and_center_crop
from diffusers_helper.memory import cpu, gpu, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, unload_complete_models, load_model_as_complete
from diffusers_helper.thread_utils import AsyncStream
from diffusers_helper.gradio.progress_bar import make_progress_bar_html
from diffusers_helper.hunyuan import vae_decode
from modules.video_queue import JobStatus
from modules.prompt_handler import parse_timestamped_prompt
from modules.generators import create_model_generator
from modules.pipelines.video_tools import combine_videos_sequentially_from_tensors
from modules import DUMMY_LORA_NAME # Import the constant
from modules.llm_captioner import unload_captioning_model
from modules.llm_enhancer import unload_enhancing_model
from . import create_pipeline

import __main__ as studio_module # Get a reference to the __main__ module object

@torch.no_grad()
def get_cached_or_encode_prompt(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2, target_device, prompt_embedding_cache):
    """
    Retrieves prompt embeddings from cache or encodes them if not found.
    Stores encoded embeddings (on CPU) in the cache.
    Returns embeddings moved to the target_device.
    """
    from diffusers_helper.hunyuan import encode_prompt_conds, crop_or_pad_yield_mask
    
    if prompt in prompt_embedding_cache:
        print(f"Cache hit for prompt: {prompt[:60]}...")
        llama_vec_cpu, llama_mask_cpu, clip_l_pooler_cpu = prompt_embedding_cache[prompt]
        # Move cached embeddings (from CPU) to the target device
        llama_vec = llama_vec_cpu.to(target_device)
        llama_attention_mask = llama_mask_cpu.to(target_device) if llama_mask_cpu is not None else None
        clip_l_pooler = clip_l_pooler_cpu.to(target_device)
        return llama_vec, llama_attention_mask, clip_l_pooler
    else:
        print(f"Cache miss for prompt: {prompt[:60]}...")
        llama_vec, clip_l_pooler = encode_prompt_conds(
            prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2
        )
        llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
        # Store CPU copies in cache
        prompt_embedding_cache[prompt] = (llama_vec.cpu(), llama_attention_mask.cpu() if llama_attention_mask is not None else None, clip_l_pooler.cpu())
        # Return embeddings already on the target device (as encode_prompt_conds uses the model's device)
        return llama_vec, llama_attention_mask, clip_l_pooler

@torch.no_grad()
def worker(
    model_type,
    input_image,
    end_frame_image,     # The end frame image (numpy array or None)
    end_frame_strength,  # Influence of the end frame
    prompt_text, 
    n_prompt, 
    seed, 
    total_second_length, 
    latent_window_size,
    steps, 
    cfg, 
    gs, 
    rs, 
    use_teacache, 
    teacache_num_steps, 
    teacache_rel_l1_thresh,
    use_magcache,
    magcache_threshold,
    magcache_max_consecutive_skips,
    magcache_retention_ratio,
    blend_sections, 
    latent_type,
    selected_loras,
    has_input_image,
    lora_values=None, 
    job_stream=None,
    output_dir=None,
    metadata_dir=None,
    input_files_dir=None,  # Add input_files_dir parameter
    input_image_path=None,  # Add input_image_path parameter
    end_frame_image_path=None,  # Add end_frame_image_path parameter
    resolutionW=640,  # Add resolution parameter with default value
    resolutionH=640,
    lora_loaded_names=[],
    input_video=None,     # Add input_video parameter with default value of None
    combine_with_source=None,  # Add combine_with_source parameter
    num_cleaned_frames=5,  # Add num_cleaned_frames parameter with default value
    save_metadata_checked=True  # Add save_metadata_checked parameter
):
    """
    Worker function for video generation.
    """

    random_generator = torch.Generator("cpu").manual_seed(seed)

    unload_enhancing_model()
    unload_captioning_model()

    # Filter out the dummy LoRA from selected_loras at the very beginning of the worker
    actual_selected_loras_for_worker = []
    if isinstance(selected_loras, list):
        actual_selected_loras_for_worker = [lora for lora in selected_loras if lora != DUMMY_LORA_NAME]
        if DUMMY_LORA_NAME in selected_loras and DUMMY_LORA_NAME in actual_selected_loras_for_worker: # Should not happen if filter works
            print(f"Worker.py: Error - '{DUMMY_LORA_NAME}' was selected but not filtered out.")
        elif DUMMY_LORA_NAME in selected_loras:
             print(f"Worker.py: Filtered out '{DUMMY_LORA_NAME}' from selected LoRAs.")
    elif selected_loras is not None: # If it's a single string (should not happen with multiselect dropdown)
        if selected_loras != DUMMY_LORA_NAME:
            actual_selected_loras_for_worker = [selected_loras]
    selected_loras = actual_selected_loras_for_worker
    print(f"Worker: Selected LoRAs for this worker: {selected_loras}")
    
    # Import globals from the main module
    from __main__ import high_vram, args, text_encoder, text_encoder_2, tokenizer, tokenizer_2, vae, image_encoder, feature_extractor, prompt_embedding_cache, settings, stream
    
    # Ensure any existing LoRAs are unloaded from the current generator
    if studio_module.current_generator is not None:
        print("Worker: Unloading LoRAs from studio_module.current_generator")
        studio_module.current_generator.unload_loras()
        import gc
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
    
    stream_to_use = job_stream if job_stream is not None else stream

    total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
    total_latent_sections = int(max(round(total_latent_sections), 1))

    # --- Total progress tracking ---
    total_steps = total_latent_sections * steps  # Total diffusion steps over all segments
    step_durations = []  # Rolling history of recent step durations for ETA
    last_step_time = time.time()

    # Parse the timestamped prompt with boundary snapping and reversing
    # prompt_text should now be the original string from the job queue
    prompt_sections = parse_timestamped_prompt(prompt_text, total_second_length, latent_window_size, model_type)
    job_id = generate_timestamp()

    # Initialize progress data with a clear starting message and dummy preview
    dummy_preview = np.zeros((64, 64, 3), dtype=np.uint8)
    initial_progress_data = {
        'preview': dummy_preview,
        'desc': 'Starting job...',
        'html': make_progress_bar_html(0, 'Starting job...')
    }
    
    # Store initial progress data in the job object if using a job stream
    if job_stream is not None:
        try:
            from __main__ import job_queue
            job = job_queue.get_job(job_id)
            if job:
                job.progress_data = initial_progress_data
        except Exception as e:
            print(f"Error storing initial progress data: {e}")
    
    # Push initial progress update to both streams
    stream_to_use.output_queue.push(('progress', (dummy_preview, 'Starting job...', make_progress_bar_html(0, 'Starting job...'))))
    
    # Push job ID to stream to ensure monitoring connection
    stream_to_use.output_queue.push(('job_id', job_id))
    stream_to_use.output_queue.push(('monitor_job', job_id))
    
    # Always push to the main stream to ensure the UI is updated
    from __main__ import stream as main_stream
    if main_stream:  # Always push to main stream regardless of whether it's the same as stream_to_use
        print(f"Pushing initial progress update to main stream for job {job_id}")
        main_stream.output_queue.push(('progress', (dummy_preview, 'Starting job...', make_progress_bar_html(0, 'Starting job...'))))
        
        # Push job ID to main stream to ensure monitoring connection
        main_stream.output_queue.push(('job_id', job_id))
        main_stream.output_queue.push(('monitor_job', job_id))

    try:
        # Create a settings dictionary for the pipeline
        pipeline_settings = {
            "output_dir": output_dir,
            "metadata_dir": metadata_dir,
            "input_files_dir": input_files_dir,
            "save_metadata": settings.get("save_metadata", True),
            "gpu_memory_preservation": settings.get("gpu_memory_preservation", 6),
            "mp4_crf": settings.get("mp4_crf", 16),
            "clean_up_videos": settings.get("clean_up_videos", True),
            "gradio_temp_dir": settings.get("gradio_temp_dir", "./gradio_temp"),
            "high_vram": high_vram
        }
        
        # Create the appropriate pipeline for the model type
        pipeline = create_pipeline(model_type, pipeline_settings)
        
        # Create job parameters dictionary
        job_params = {
            'model_type': model_type,
            'input_image': input_image,
            'end_frame_image': end_frame_image,
            'end_frame_strength': end_frame_strength,
            'prompt_text': prompt_text,
            'n_prompt': n_prompt,
            'seed': seed,
            'total_second_length': total_second_length,
            'latent_window_size': latent_window_size,
            'steps': steps,
            'cfg': cfg,
            'gs': gs,
            'rs': rs,
            'blend_sections': blend_sections,
            'latent_type': latent_type,
            'use_teacache': use_teacache,
            'teacache_num_steps': teacache_num_steps,
            'teacache_rel_l1_thresh': teacache_rel_l1_thresh,
            'use_magcache': use_magcache,
            'magcache_threshold': magcache_threshold,
            'magcache_max_consecutive_skips': magcache_max_consecutive_skips,
            'magcache_retention_ratio': magcache_retention_ratio,
            'selected_loras': selected_loras,
            'has_input_image': has_input_image,
            'lora_values': lora_values,
            'resolutionW': resolutionW,
            'resolutionH': resolutionH,
            'lora_loaded_names': lora_loaded_names,
            'input_image_path': input_image_path,
            'end_frame_image_path': end_frame_image_path,
            'combine_with_source': combine_with_source,
            'num_cleaned_frames': num_cleaned_frames,
            'save_metadata_checked': save_metadata_checked # Ensure it's in job_params for internal use
        }
        
        # Validate parameters
        is_valid, error_message = pipeline.validate_parameters(job_params)
        if not is_valid:
            raise ValueError(f"Invalid parameters: {error_message}")
        
        # Prepare parameters
        job_params = pipeline.prepare_parameters(job_params)
        
        if not high_vram:
            # Unload everything *except* the potentially active transformer
            unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae)
            if studio_module.current_generator is not None and studio_module.current_generator.transformer is not None:
                offload_model_from_device_for_memory_preservation(studio_module.current_generator.transformer, target_device=gpu, preserved_memory_gb=8)


        # --- Model Loading / Switching ---
        print(f"Worker starting for model type: {model_type}")
        print(f"Worker: Before model assignment, studio_module.current_generator is {type(studio_module.current_generator)}, id: {id(studio_module.current_generator)}")
        
        # Create the appropriate model generator
        new_generator = create_model_generator(
            model_type,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            vae=vae,
            image_encoder=image_encoder,
            feature_extractor=feature_extractor,
            high_vram=high_vram,
            prompt_embedding_cache=prompt_embedding_cache,
            offline=args.offline,
            settings=settings
        )
        
        # Update the global generator
        # This modifies the 'current_generator' attribute OF THE '__main__' MODULE OBJECT
        studio_module.current_generator = new_generator
        print(f"Worker: AFTER model assignment, studio_module.current_generator is {type(studio_module.current_generator)}, id: {id(studio_module.current_generator)}")
        if studio_module.current_generator:
             print(f"Worker: studio_module.current_generator.transformer is {type(studio_module.current_generator.transformer)}")        
             
        # Load the transformer model
        studio_module.current_generator.load_model()
        
        # Ensure the model has no LoRAs loaded
        print(f"Ensuring {model_type} model has no LoRAs loaded")
        studio_module.current_generator.unload_loras()

        # Preprocess inputs
        stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Preprocessing inputs...'))))
        processed_inputs = pipeline.preprocess_inputs(job_params)
        
        # Update job_params with processed inputs
        job_params.update(processed_inputs)
        
        # Save the starting image directly to the output directory with full metadata
        # Check both global settings and job-specific save_metadata_checked parameter
        if settings.get("save_metadata") and job_params.get('save_metadata_checked', True) and job_params.get('input_image') is not None:
            try:
                # Import the save_job_start_image function from metadata_utils
                from modules.pipelines.metadata_utils import save_job_start_image, create_metadata
                
                # Create comprehensive metadata for the job
                metadata_dict = create_metadata(job_params, job_id, settings)
                
                # Save the starting image with metadata
                save_job_start_image(job_params, job_id, settings)
                
                print(f"Saved metadata and starting image for job {job_id}")
            except Exception as e:
                print(f"Error saving starting image and metadata: {e}")
                traceback.print_exc()
                
        # Pre-encode all prompts
        stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding all prompts...'))))
        
        # THE FOLLOWING CODE SHOULD BE INSIDE THE TRY BLOCK
        if not high_vram:
            fake_diffusers_current_device(text_encoder, gpu)
            load_model_as_complete(text_encoder_2, target_device=gpu)

        # PROMPT BLENDING: Pre-encode all prompts and store in a list in order
        unique_prompts = []
        for section in prompt_sections:
            if section.prompt not in unique_prompts:
                unique_prompts.append(section.prompt)

        encoded_prompts = {}
        for prompt in unique_prompts:
            # Use the helper function for caching and encoding
            llama_vec, llama_attention_mask, clip_l_pooler = get_cached_or_encode_prompt(
                prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2, gpu, prompt_embedding_cache
            )
            encoded_prompts[prompt] = (llama_vec, llama_attention_mask, clip_l_pooler)

        # PROMPT BLENDING: Build a list of (start_section_idx, prompt) for each prompt
        prompt_change_indices = []
        last_prompt = None
        for idx, section in enumerate(prompt_sections):
            if section.prompt != last_prompt:
                prompt_change_indices.append((idx, section.prompt))
                last_prompt = section.prompt

        # Encode negative prompt
        if cfg == 1:
            llama_vec_n, llama_attention_mask_n, clip_l_pooler_n = (
                torch.zeros_like(encoded_prompts[prompt_sections[0].prompt][0]),
                torch.zeros_like(encoded_prompts[prompt_sections[0].prompt][1]),
                torch.zeros_like(encoded_prompts[prompt_sections[0].prompt][2])
            )
        else:
             # Use the helper function for caching and encoding negative prompt
            # Ensure n_prompt is a string
            n_prompt_str = str(n_prompt) if n_prompt is not None else ""
            llama_vec_n, llama_attention_mask_n, clip_l_pooler_n = get_cached_or_encode_prompt(
                n_prompt_str, text_encoder, text_encoder_2, tokenizer, tokenizer_2, gpu, prompt_embedding_cache
            )

        end_of_input_video_embedding = None # Video model end frame CLIP Vision embedding
        # Process input image or video based on model type
        if model_type == "Video" or model_type == "Video F1":
            stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Video processing ...'))))
            
            # Encode the video using the VideoModelGenerator
            start_latent, input_image_np, video_latents, fps, height, width, input_video_pixels, end_of_input_video_image_np, input_frames_resized_np = studio_module.current_generator.video_encode(
                video_path=job_params['input_image'],  # For Video model, input_image contains the video path
                resolution=job_params['resolutionW'],
                no_resize=False,
                vae_batch_size=16,
                device=gpu,
                input_files_dir=job_params['input_files_dir']
            )

            if end_of_input_video_image_np is not None:
                try:
                    from modules.pipelines.metadata_utils import save_last_video_frame
                    save_last_video_frame(job_params, job_id, settings, end_of_input_video_image_np)
                except Exception as e:
                    print(f"Error saving last video frame: {e}")
                    traceback.print_exc()

            # RT_BORG: retained only until we make our final decisions on how to handle combining videos
            # Only necessary to retain resized frames to produce a combined video with source frames of the right dimensions 
            #if combine_with_source:
            #    # Store input_frames_resized_np in job_params for later use
            #    job_params['input_frames_resized_np'] = input_frames_resized_np
            
            # CLIP Vision encoding for the first frame
            stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
            
            if not high_vram:
                load_model_as_complete(image_encoder, target_device=gpu)
                
            from diffusers_helper.clip_vision import hf_clip_vision_encode
            image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
            image_encoder_last_hidden_state = image_encoder_output.last_hidden_state

            end_of_input_video_embedding = hf_clip_vision_encode(end_of_input_video_image_np, feature_extractor, image_encoder).last_hidden_state
            
            # Store the input video pixels and latents for later use
            input_video_pixels = input_video_pixels.cpu()
            video_latents = video_latents.cpu()
            
            # Store the full video latents in the generator instance for preparing clean latents
            if hasattr(studio_module.current_generator, 'set_full_video_latents'):
                studio_module.current_generator.set_full_video_latents(video_latents.clone())
                print(f"Stored full input video latents in VideoModelGenerator. Shape: {video_latents.shape}")
            
            # For Video model, history_latents is initialized with the video_latents
            history_latents = video_latents
            
            # Store the last frame of the video latents as start_latent for the model
            start_latent = video_latents[:, :, -1:].cpu()
            print(f"Using last frame of input video as start_latent. Shape: {start_latent.shape}")
            print(f"Placed last frame of video at position 0 in history_latents")
            
            print(f"Initialized history_latents with video context. Shape: {history_latents.shape}")
            
            # Store the number of frames in the input video for later use
            input_video_frame_count = video_latents.shape[2]
        else:
            # Regular image processing
            height = job_params['height']
            width = job_params['width']

            if not has_input_image and job_params.get('latent_type') == 'Noise':
                # print("************************************************")
                # print("** Using 'Noise' latent type for T2V workflow **")
                # print("************************************************")

                # Create a random latent to serve as the initial VAE context anchor.
                # This provides a random starting point without visual bias.
                start_latent = torch.randn(
                    (1, 16, 1, height // 8, width // 8),
                    generator=random_generator, device=random_generator.device
                ).to(device=gpu, dtype=torch.float32)

                # Create a neutral black image to generate a valid "null" CLIP Vision embedding.
                # This provides the model with a valid, in-distribution unconditional image prompt.
                # RT_BORG: Clip doesn't understand noise at all. I also tried using
                #   image_encoder_last_hidden_state = torch.zeros((1, 257, 1152), device=gpu, dtype=studio_module.current_generator.transformer.dtype)
                # to represent a "null" CLIP Vision embedding in the shape for the CLIP encoder,
                # but the Video model wasn't trained to handle zeros, so using a neutral black image for CLIP.

                black_image_np = np.zeros((height, width, 3), dtype=np.uint8)

                if not high_vram:
                    load_model_as_complete(image_encoder, target_device=gpu)

                from diffusers_helper.clip_vision import hf_clip_vision_encode
                image_encoder_output = hf_clip_vision_encode(black_image_np, feature_extractor, image_encoder)
                image_encoder_last_hidden_state = image_encoder_output.last_hidden_state

            else:
                input_image_np = job_params['input_image']
                
                input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
                input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]

                # Start image encoding with VAE
                stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))

                if not high_vram:
                    load_model_as_complete(vae, target_device=gpu)

                from diffusers_helper.hunyuan import vae_encode
                start_latent = vae_encode(input_image_pt, vae)

                # CLIP Vision
                stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))

                if not high_vram:
                    load_model_as_complete(image_encoder, target_device=gpu)

                from diffusers_helper.clip_vision import hf_clip_vision_encode
                image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
                image_encoder_last_hidden_state = image_encoder_output.last_hidden_state

        # VAE encode end_frame_image if provided
        end_frame_latent = None
        # VAE encode end_frame_image resized to output dimensions, if provided
        end_frame_output_dimensions_latent = None 
        end_clip_embedding = None # Video model end frame CLIP Vision embedding

        # Models with end_frame_image processing
        if (model_type == "Original with Endframe" or model_type == "Video") and job_params.get('end_frame_image') is not None:
            print(f"Processing end frame for {model_type} model...")
            end_frame_image = job_params['end_frame_image']
            
            if not isinstance(end_frame_image, np.ndarray):
                print(f"Warning: end_frame_image is not a numpy array (type: {type(end_frame_image)}). Attempting conversion or skipping.")
                try:
                    end_frame_image = np.array(end_frame_image)
                except Exception as e_conv:
                    print(f"Could not convert end_frame_image to numpy array: {e_conv}. Skipping end frame.")
                    end_frame_image = None
            
            if end_frame_image is not None:
                # Use the main job's target width/height (bucket dimensions) for the end frame
                end_frame_np = job_params['end_frame_image']
                
                if settings.get("save_metadata"):
                    Image.fromarray(end_frame_np).save(os.path.join(metadata_dir, f'{job_id}_end_frame_processed.png'))
                
                end_frame_pt = torch.from_numpy(end_frame_np).float() / 127.5 - 1
                end_frame_pt = end_frame_pt.permute(2, 0, 1)[None, :, None] # VAE expects [B, C, F, H, W]
                
                if not high_vram: load_model_as_complete(vae, target_device=gpu) # Ensure VAE is loaded
                from diffusers_helper.hunyuan import vae_encode
                end_frame_latent = vae_encode(end_frame_pt, vae)

                # end_frame_output_dimensions_latent is sized like the start_latent and generated latents
                end_frame_output_dimensions_np = resize_and_center_crop(end_frame_np, width, height)
                end_frame_output_dimensions_pt = torch.from_numpy(end_frame_output_dimensions_np).float() / 127.5 - 1
                end_frame_output_dimensions_pt = end_frame_output_dimensions_pt.permute(2, 0, 1)[None, :, None] # VAE expects [B, C, F, H, W]
                end_frame_output_dimensions_latent = vae_encode(end_frame_output_dimensions_pt, vae)

                print("End frame VAE encoded.")

                # Video Mode CLIP Vision encoding for end frame
                if model_type == "Video":
                    if not high_vram: # Ensure image_encoder is on GPU for this operation
                        load_model_as_complete(image_encoder, target_device=gpu)
                    from diffusers_helper.clip_vision import hf_clip_vision_encode
                    end_clip_embedding = hf_clip_vision_encode(end_frame_np, feature_extractor, image_encoder).last_hidden_state
                    end_clip_embedding = end_clip_embedding.to(studio_module.current_generator.transformer.dtype)
                    # Need that dtype conversion for end_clip_embedding? I don't think so, but it was in the original PR.
        
        if not high_vram: # Offload VAE and image_encoder if they were loaded
            offload_model_from_device_for_memory_preservation(vae, target_device=gpu, preserved_memory_gb=settings.get("gpu_memory_preservation"))
            offload_model_from_device_for_memory_preservation(image_encoder, target_device=gpu, preserved_memory_gb=settings.get("gpu_memory_preservation"))
        
        # Dtype
        for prompt_key in encoded_prompts:
            llama_vec, llama_attention_mask, clip_l_pooler = encoded_prompts[prompt_key]
            llama_vec = llama_vec.to(studio_module.current_generator.transformer.dtype)
            clip_l_pooler = clip_l_pooler.to(studio_module.current_generator.transformer.dtype)
            encoded_prompts[prompt_key] = (llama_vec, llama_attention_mask, clip_l_pooler)

        llama_vec_n = llama_vec_n.to(studio_module.current_generator.transformer.dtype)
        clip_l_pooler_n = clip_l_pooler_n.to(studio_module.current_generator.transformer.dtype)
        image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(studio_module.current_generator.transformer.dtype)

        # Sampling
        stream_to_use.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))

        num_frames = latent_window_size * 4 - 3

        # Initialize total_generated_latent_frames for Video model
        total_generated_latent_frames = 0  # Default initialization for all model types

        # Initialize history latents based on model type
        if model_type != "Video" and model_type != "Video F1":  # Skip for Video models as we already initialized it
            history_latents = studio_module.current_generator.prepare_history_latents(height, width)
            
            # For F1 model, initialize with start latent
            if model_type == "F1":
                history_latents = studio_module.current_generator.initialize_with_start_latent(history_latents, start_latent, has_input_image)
                # If we had a real start image, it was just added to the history_latents
                total_generated_latent_frames = 1 if has_input_image else 0
            elif model_type == "Original" or model_type == "Original with Endframe":
                total_generated_latent_frames = 0

        history_pixels = None
        
        # Get latent paddings from the generator
        latent_paddings = studio_module.current_generator.get_latent_paddings(total_latent_sections)

        # PROMPT BLENDING: Track section index
        section_idx = 0

        # Load LoRAs if selected
        if selected_loras:
            lora_folder_from_settings = settings.get("lora_dir")
            studio_module.current_generator.load_loras(selected_loras, lora_folder_from_settings, lora_loaded_names, lora_values)

            # --- Callback for progress ---
        def callback(d):
            nonlocal last_step_time, step_durations
            
            # Check for cancellation signal
            if stream_to_use.input_queue.top() == 'end':
                print("Cancellation signal detected in callback")
                return 'cancel'  # Return a signal that will be checked in the sampler
                
            now_time = time.time()
            # Record duration between diffusion steps (skip first where duration may include setup)
            if last_step_time is not None:
                step_delta = now_time - last_step_time
                if step_delta > 0:
                    step_durations.append(step_delta)
                    if len(step_durations) > 30:  # Keep only recent 30 steps
                        step_durations.pop(0)
            last_step_time = now_time
            avg_step = sum(step_durations) / len(step_durations) if step_durations else 0.0

            preview = d['denoised']
            from diffusers_helper.hunyuan import vae_decode_fake
            preview = vae_decode_fake(preview)
            preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
            preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')

            # --- Progress & ETA logic ---
            # Current segment progress
            current_step = d['i'] + 1
            percentage = int(100.0 * current_step / steps)

            # Total progress
            total_steps_done = section_idx * steps + current_step
            total_percentage = int(100.0 * total_steps_done / total_steps)

            # ETA calculations
            def fmt_eta(sec):
                try:
                    return str(datetime.timedelta(seconds=int(sec)))
                except Exception:
                    return "--:--"

            segment_eta = (steps - current_step) * avg_step if avg_step else 0
            total_eta = (total_steps - total_steps_done) * avg_step if avg_step else 0

            segment_hint = f'Sampling {current_step}/{steps}  ETA {fmt_eta(segment_eta)}'
            total_hint = f'Total {total_steps_done}/{total_steps}  ETA {fmt_eta(total_eta)}'

            # For Video model, add the input video frame count when calculating current position
            if model_type == "Video":
                # Calculate the time position including the input video frames
                input_video_time = input_video_frame_count * 4 / 30  # Convert latent frames to time
                current_pos = input_video_time + (total_generated_latent_frames * 4 - 3) / 30
                # Original position is the remaining time to generate
                original_pos = total_second_length - (total_generated_latent_frames * 4 - 3) / 30
            else:
                # For other models, calculate as before
                current_pos = (total_generated_latent_frames * 4 - 3) / 30
                original_pos = total_second_length - current_pos
            
            # Ensure positions are not negative
            if current_pos < 0: current_pos = 0
            if original_pos < 0: original_pos = 0

            hint = segment_hint  # deprecated variable kept to minimise other code changes
            desc = studio_module.current_generator.format_position_description(
                total_generated_latent_frames, 
                current_pos, 
                original_pos, 
                current_prompt
            )

            # Create progress data dictionary
            progress_data = {
                'preview': preview,
                'desc': desc,
                'html': make_progress_bar_html(percentage, segment_hint) + make_progress_bar_html(total_percentage, total_hint)
            }
            
            # Store progress data in the job object if using a job stream
            if job_stream is not None:
                try:
                    from __main__ import job_queue
                    job = job_queue.get_job(job_id)
                    if job:
                        job.progress_data = progress_data
                except Exception as e:
                    print(f"Error updating job progress data: {e}")
                    
            # Always push to the job-specific stream
            stream_to_use.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, segment_hint) + make_progress_bar_html(total_percentage, total_hint))))
            
            # Always push to the main stream to ensure the UI is updated
            # This is especially important for resumed jobs
            from __main__ import stream as main_stream
            if main_stream:  # Always push to main stream regardless of whether it's the same as stream_to_use
                main_stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, segment_hint) + make_progress_bar_html(total_percentage, total_hint))))
                
            # Also push job ID to main stream to ensure monitoring connection
            if main_stream:
                main_stream.output_queue.push(('job_id', job_id))
                main_stream.output_queue.push(('monitor_job', job_id))

        # MagCache / TeaCache Initialization Logic
        magcache = None
        # RT_BORG: I cringe at this, but refactoring to introduce an actual model class will fix it.
        model_family = "F1" if "F1" in model_type else "Original"

        if settings.get("calibrate_magcache"): # Calibration mode (forces MagCache on)
            print("Setting Up MagCache for Calibration")
            is_calibrating = settings.get("calibrate_magcache")
            studio_module.current_generator.transformer.initialize_teacache(enable_teacache=False) # Ensure TeaCache is off
            magcache = MagCache(model_family=model_family, height=height, width=width, num_steps=steps, is_calibrating=is_calibrating, threshold=magcache_threshold, max_consectutive_skips=magcache_max_consecutive_skips, retention_ratio=magcache_retention_ratio)
            studio_module.current_generator.transformer.install_magcache(magcache)
        elif use_magcache: # User selected MagCache
            print("Setting Up MagCache")
            magcache = MagCache(model_family=model_family, height=height, width=width, num_steps=steps, is_calibrating=False, threshold=magcache_threshold, max_consectutive_skips=magcache_max_consecutive_skips, retention_ratio=magcache_retention_ratio)
            studio_module.current_generator.transformer.initialize_teacache(enable_teacache=False) # Ensure TeaCache is off
            studio_module.current_generator.transformer.install_magcache(magcache)
        elif use_teacache:
            print("Setting Up TeaCache")
            studio_module.current_generator.transformer.initialize_teacache(enable_teacache=True, num_steps=teacache_num_steps, rel_l1_thresh=teacache_rel_l1_thresh)
            studio_module.current_generator.transformer.uninstall_magcache()
        else:
            print("No Transformer Cache in use")
            studio_module.current_generator.transformer.initialize_teacache(enable_teacache=False)
            studio_module.current_generator.transformer.uninstall_magcache()

        # --- Main generation loop ---
        # `i_section_loop` will be our loop counter for applying end_frame_latent
        for i_section_loop, latent_padding in enumerate(latent_paddings): # Existing loop structure
            is_last_section = latent_padding == 0
            latent_padding_size = latent_padding * latent_window_size

            if stream_to_use.input_queue.top() == 'end':
                stream_to_use.output_queue.push(('end', None))
                return

            # Calculate the current time position
            if model_type == "Video":
                # For Video model, add the input video time to the current position
                input_video_time = input_video_frame_count * 4 / 30  # Convert latent frames to time
                current_time_position = (total_generated_latent_frames * 4 - 3) / 30  # in seconds
                if current_time_position < 0:
                    current_time_position = 0.01
            else:
                # For other models, calculate as before
                current_time_position = (total_generated_latent_frames * 4 - 3) / 30  # in seconds
                if current_time_position < 0:
                    current_time_position = 0.01

            # Find the appropriate prompt for this section
            current_prompt = prompt_sections[0].prompt  # Default to first prompt
            for section in prompt_sections:
                if section.start_time <= current_time_position and (section.end_time is None or current_time_position < section.end_time):
                    current_prompt = section.prompt
                    break

            # PROMPT BLENDING: Find if we're in a blend window
            blend_alpha = None
            prev_prompt = current_prompt
            next_prompt = current_prompt

            # Only try to blend if blend_sections > 0 and we have prompt change indices and multiple sections
            try:
                blend_sections_int = int(blend_sections)
            except ValueError:
                blend_sections_int = 0 # Default to 0 if conversion fails, effectively disabling blending
                print(f"Warning: blend_sections ('{blend_sections}') is not a valid integer. Disabling prompt blending for this section.")
            if blend_sections_int > 0 and prompt_change_indices and len(prompt_sections) > 1:
                for i, (change_idx, prompt) in enumerate(prompt_change_indices):
                    if section_idx < change_idx:
                        prev_prompt = prompt_change_indices[i - 1][1] if i > 0 else prompt
                        next_prompt = prompt
                        blend_start = change_idx
                        blend_end = change_idx + blend_sections
                        if section_idx >= change_idx and section_idx < blend_end:
                            blend_alpha = (section_idx - change_idx + 1) / blend_sections
                        break
                    elif section_idx == change_idx:
                        # At the exact change, start blending
                        if i > 0:
                            prev_prompt = prompt_change_indices[i - 1][1]
                            next_prompt = prompt
                            blend_alpha = 1.0 / blend_sections
                        else:
                            prev_prompt = prompt
                            next_prompt = prompt
                            blend_alpha = None
                        break
                else:
                    # After last change, no blending
                    prev_prompt = current_prompt
                    next_prompt = current_prompt
                    blend_alpha = None

            # Get the encoded prompt for this section
            if blend_alpha is not None and prev_prompt != next_prompt:
                # Blend embeddings
                prev_llama_vec, prev_llama_attention_mask, prev_clip_l_pooler = encoded_prompts[prev_prompt]
                next_llama_vec, next_llama_attention_mask, next_clip_l_pooler = encoded_prompts[next_prompt]
                llama_vec = (1 - blend_alpha) * prev_llama_vec + blend_alpha * next_llama_vec
                llama_attention_mask = prev_llama_attention_mask  # usually same
                clip_l_pooler = (1 - blend_alpha) * prev_clip_l_pooler + blend_alpha * next_clip_l_pooler
                print(f"Blending prompts: '{prev_prompt[:30]}...' -> '{next_prompt[:30]}...', alpha={blend_alpha:.2f}")
            else:
                llama_vec, llama_attention_mask, clip_l_pooler = encoded_prompts[current_prompt]

            original_time_position = total_second_length - current_time_position
            if original_time_position < 0:
                original_time_position = 0

            print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}, '
                  f'time position: {current_time_position:.2f}s (original: {original_time_position:.2f}s), '
                  f'using prompt: {current_prompt[:60]}...')

            # Apply end_frame_latent to history_latents for models with Endframe support
            if (model_type == "Original with Endframe") and i_section_loop == 0 and end_frame_latent is not None:
                print(f"Applying end_frame_latent to history_latents with strength: {end_frame_strength}")
                actual_end_frame_latent_for_history = end_frame_latent.clone()
                if end_frame_strength != 1.0: # Only multiply if not full strength
                    actual_end_frame_latent_for_history = actual_end_frame_latent_for_history * end_frame_strength
                
                # Ensure history_latents is on the correct device (usually CPU for this kind of modification if it's init'd there)
                # and that the assigned tensor matches its dtype.
                # The `studio_module.current_generator.prepare_history_latents` initializes it on CPU with float32.
                if history_latents.shape[2] >= 1: # Check if the 'Depth_slots' dimension is sufficient
                    if model_type == "Original with Endframe":
                        # For Original model, apply to the beginning (position 0)
                        history_latents[:, :, 0:1, :, :] = actual_end_frame_latent_for_history.to(
                            device=history_latents.device, # Assign to history_latents' current device
                            dtype=history_latents.dtype    # Match history_latents' dtype
                        )
                    elif model_type == "F1 with Endframe":
                        # For F1 model, apply to the end (last position)
                        history_latents[:, :, -1:, :, :] = actual_end_frame_latent_for_history.to(
                            device=history_latents.device, # Assign to history_latents' current device
                            dtype=history_latents.dtype    # Match history_latents' dtype
                        )
                    print(f"End frame latent applied to history for {model_type} model.")
                else:
                    print("Warning: history_latents not shaped as expected for end_frame application.")
            
            
            # Video models use combined methods to prepare clean latents and indices
            if model_type == "Video":
                # Get num_cleaned_frames from job_params if available, otherwise use default value of 5
                num_cleaned_frames = job_params.get('num_cleaned_frames', 5)
                clean_latent_indices, latent_indices, clean_latent_2x_indices, clean_latent_4x_indices, clean_latents, clean_latents_2x, clean_latents_4x = \
                studio_module.current_generator.video_prepare_clean_latents_and_indices(end_frame_output_dimensions_latent, end_frame_strength, end_clip_embedding, end_of_input_video_embedding, latent_paddings, latent_padding, latent_padding_size, latent_window_size, video_latents, history_latents, num_cleaned_frames)
            elif model_type == "Video F1":
                # Get num_cleaned_frames from job_params if available, otherwise use default value of 5
                num_cleaned_frames = job_params.get('num_cleaned_frames', 5)
                clean_latent_indices, latent_indices, clean_latent_2x_indices, clean_latent_4x_indices, clean_latents, clean_latents_2x, clean_latents_4x = \
                studio_module.current_generator.video_f1_prepare_clean_latents_and_indices(latent_window_size, video_latents, history_latents, num_cleaned_frames)
            else:
                # Prepare indices using the generator
                clean_latent_indices, latent_indices, clean_latent_2x_indices, clean_latent_4x_indices = studio_module.current_generator.prepare_indices(latent_padding_size, latent_window_size)

                # Prepare clean latents using the generator
                clean_latents, clean_latents_2x, clean_latents_4x = studio_module.current_generator.prepare_clean_latents(start_latent, history_latents)
            
            # Print debug info
            print(f"{model_type} model section {section_idx+1}/{total_latent_sections}, latent_padding={latent_padding}")

            if not high_vram:
                # Unload VAE etc. before loading transformer
                unload_complete_models(vae, text_encoder, text_encoder_2, image_encoder)
                move_model_to_device_with_memory_preservation(studio_module.current_generator.transformer, target_device=gpu, preserved_memory_gb=settings.get("gpu_memory_preservation"))
                if selected_loras:
                    studio_module.current_generator.move_lora_adapters_to_device(gpu)


            from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
            generated_latents = sample_hunyuan(
                transformer=studio_module.current_generator.transformer,
                width=width,
                height=height,
                frames=num_frames,
                real_guidance_scale=cfg,
                distilled_guidance_scale=gs,
                guidance_rescale=rs,
                num_inference_steps=steps,
                generator=random_generator,
                prompt_embeds=llama_vec,
                prompt_embeds_mask=llama_attention_mask,
                prompt_poolers=clip_l_pooler,
                negative_prompt_embeds=llama_vec_n,
                negative_prompt_embeds_mask=llama_attention_mask_n,
                negative_prompt_poolers=clip_l_pooler_n,
                device=gpu,
                dtype=torch.bfloat16,
                image_embeddings=image_encoder_last_hidden_state,
                latent_indices=latent_indices,
                clean_latents=clean_latents,
                clean_latent_indices=clean_latent_indices,
                clean_latents_2x=clean_latents_2x,
                clean_latent_2x_indices=clean_latent_2x_indices,
                clean_latents_4x=clean_latents_4x,
                clean_latent_4x_indices=clean_latent_4x_indices,
                callback=callback,
            )

            # RT_BORG: Observe the MagCache skip patterns during dev.
            # RT_BORG: We need to use a real logger soon!
            # if magcache is not None and magcache.is_enabled:
            #     print(f"MagCache skipped: {len(magcache.steps_skipped_list)} of {steps} steps: {magcache.steps_skipped_list}")

            total_generated_latent_frames += int(generated_latents.shape[2])
            # Update history latents using the generator
            history_latents = studio_module.current_generator.update_history_latents(history_latents, generated_latents)

            if not high_vram:
                if selected_loras:
                    studio_module.current_generator.move_lora_adapters_to_device(cpu)
                offload_model_from_device_for_memory_preservation(studio_module.current_generator.transformer, target_device=gpu, preserved_memory_gb=8)
                load_model_as_complete(vae, target_device=gpu)

            # Get real history latents using the generator
            real_history_latents = studio_module.current_generator.get_real_history_latents(history_latents, total_generated_latent_frames)

            if history_pixels is None:
                history_pixels = vae_decode(real_history_latents, vae).cpu()
            else:
                section_latent_frames = studio_module.current_generator.get_section_latent_frames(latent_window_size, is_last_section)
                overlapped_frames = latent_window_size * 4 - 3

                # Get current pixels using the generator
                current_pixels = studio_module.current_generator.get_current_pixels(real_history_latents, section_latent_frames, vae)
                
                # Update history pixels using the generator
                history_pixels = studio_module.current_generator.update_history_pixels(history_pixels, current_pixels, overlapped_frames)
                
                print(f"{model_type} model section {section_idx+1}/{total_latent_sections}, history_pixels shape: {history_pixels.shape}")

            if not high_vram:
                unload_complete_models()

            output_filename = os.path.join(output_dir, f'{job_id}_{total_generated_latent_frames}.mp4')
            save_bcthw_as_mp4(history_pixels, output_filename, fps=30, crf=settings.get("mp4_crf"))
            print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
            stream_to_use.output_queue.push(('file', output_filename))

            if is_last_section:
                break

            section_idx += 1  # PROMPT BLENDING: increment section index

            # We'll handle combining the videos after the entire generation is complete
            # This section intentionally left empty to remove the in-process combination
            # --- END Main generation loop ---

        magcache = studio_module.current_generator.transformer.magcache
        if magcache is not None:
            if magcache.is_calibrating:
                output_file = os.path.join(settings.get("output_dir"), "magcache_configuration.txt")
                print(f"MagCache calibration job complete. Appending stats to configuration file: {output_file}")
                magcache.append_calibration_to_file(output_file)
            elif magcache.is_enabled:
                print(f"MagCache ({100.0 * magcache.total_cache_hits / magcache.total_cache_requests:.2f}%) skipped {magcache.total_cache_hits} of {magcache.total_cache_requests} steps.")
            studio_module.current_generator.transformer.uninstall_magcache()
            magcache = None

        # Handle the results
        result = pipeline.handle_results(job_params, output_filename)

        # Unload all LoRAs after generation completed
        if selected_loras:
            print("Unloading all LoRAs after generation completed")
            studio_module.current_generator.unload_loras()
            import gc
            gc.collect()
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    except Exception as e:
        traceback.print_exc()
        # Unload all LoRAs after error
        if studio_module.current_generator is not None and selected_loras:
            print("Unloading all LoRAs after error")
            studio_module.current_generator.unload_loras()
            import gc
            gc.collect()
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
                
        stream_to_use.output_queue.push(('error', f"Error during generation: {traceback.format_exc()}"))
        if not high_vram:
            # Ensure all models including the potentially active transformer are unloaded on error
            unload_complete_models(
                text_encoder, text_encoder_2, image_encoder, vae, 
                studio_module.current_generator.transformer if studio_module.current_generator else None
            )
    finally:
        # This finally block is associated with the main try block (starts around line 154)
        if settings.get("clean_up_videos"):
            try:
                video_files = [
                    f for f in os.listdir(output_dir)
                    if f.startswith(f"{job_id}_") and f.endswith(".mp4")
                ]
                print(f"Video files found for cleanup: {video_files}")
                if video_files:
                    def get_frame_count(filename):
                        try:
                            # Handles filenames like jobid_123.mp4
                            return int(filename.replace(f"{job_id}_", "").replace(".mp4", ""))
                        except Exception:
                            return -1
                    video_files_sorted = sorted(video_files, key=get_frame_count)
                    print(f"Sorted video files: {video_files_sorted}")
                    final_video = video_files_sorted[-1]
                    for vf in video_files_sorted[:-1]:
                        full_path = os.path.join(output_dir, vf)
                        try:
                            os.remove(full_path)
                            print(f"Deleted intermediate video: {full_path}")
                        except Exception as e:
                            print(f"Failed to delete {full_path}: {e}")
            except Exception as e:
                print(f"Error during video cleanup: {e}")

        # Check if the user wants to combine the source video with the generated video
        # This is done after the video cleanup routine to ensure the combined video is not deleted
        # RT_BORG: Retain (but suppress) this original way to combine videos until the new combiner is proven.
        combine_v1 = False
        if combine_v1 and (model_type == "Video" or model_type == "Video F1") and combine_with_source and job_params.get('input_image_path'):
            print("Creating combined video with source and generated content...")
            try:
                input_video_path = job_params.get('input_image_path')
                if input_video_path and os.path.exists(input_video_path):
                    final_video_path_for_combine = None # Use a different variable name to avoid conflict
                    video_files_for_combine = [
                        f for f in os.listdir(output_dir)
                        if f.startswith(f"{job_id}_") and f.endswith(".mp4") and "combined" not in f
                    ]
                    
                    if video_files_for_combine:
                        def get_frame_count_for_combine(filename): # Renamed to avoid conflict
                            try:
                                return int(filename.replace(f"{job_id}_", "").replace(".mp4", ""))
                            except Exception:
                                return float('inf') 
                                
                        video_files_sorted_for_combine = sorted(video_files_for_combine, key=get_frame_count_for_combine)
                        if video_files_sorted_for_combine: # Check if the list is not empty
                             final_video_path_for_combine = os.path.join(output_dir, video_files_sorted_for_combine[-1])
                    
                    if final_video_path_for_combine and os.path.exists(final_video_path_for_combine):
                        combined_output_filename = os.path.join(output_dir, f'{job_id}_combined_v1.mp4')
                        combined_result = None
                        try:
                            if hasattr(studio_module.current_generator, 'combine_videos'):
                                print(f"Using VideoModelGenerator.combine_videos to create side-by-side comparison")
                                combined_result = studio_module.current_generator.combine_videos(
                                    source_video_path=input_video_path,
                                    generated_video_path=final_video_path_for_combine, # Use the correct variable
                                    output_path=combined_output_filename
                                )
                                
                                if combined_result:
                                    print(f"Combined video saved to: {combined_result}")
                                    stream_to_use.output_queue.push(('file', combined_result))
                                else:
                                    print("Failed to create combined video, falling back to direct ffmpeg method")
                                    combined_result = None 
                            else:
                                print("VideoModelGenerator does not have combine_videos method. Using fallback method.")
                        except Exception as e_combine: # Use a different exception variable name
                            print(f"Error in combine_videos method: {e_combine}")
                            print("Falling back to direct ffmpeg method")
                            combined_result = None 
                            
                        if not combined_result:
                            print("Using fallback method to combine videos")
                            from modules.toolbox.toolbox_processor import VideoProcessor
                            from modules.toolbox.message_manager import MessageManager
                            
                            message_manager = MessageManager()
                            # Pass settings.settings if it exists, otherwise pass the settings object
                            video_processor_settings = settings.settings if hasattr(settings, 'settings') else settings
                            video_processor = VideoProcessor(message_manager, video_processor_settings)
                            ffmpeg_exe = video_processor.ffmpeg_exe
                            
                            if ffmpeg_exe:
                                print(f"Using ffmpeg at: {ffmpeg_exe}")
                                import subprocess
                                temp_list_file = os.path.join(output_dir, f'{job_id}_filelist.txt')
                                with open(temp_list_file, 'w') as f:
                                    f.write(f"file '{input_video_path}'\n")
                                    f.write(f"file '{final_video_path_for_combine}'\n") # Use the correct variable
                                
                                ffmpeg_cmd = [
                                    ffmpeg_exe, "-y", "-f", "concat", "-safe", "0",
                                    "-i", temp_list_file, "-c", "copy", combined_output_filename
                                ]
                                print(f"Running ffmpeg command: {' '.join(ffmpeg_cmd)}")
                                subprocess.run(ffmpeg_cmd, check=True, capture_output=True, text=True)
                                if os.path.exists(temp_list_file):
                                    os.remove(temp_list_file)
                                print(f"Combined video saved to: {combined_output_filename}")
                                stream_to_use.output_queue.push(('file', combined_output_filename))
                            else:
                                print("FFmpeg executable not found. Cannot combine videos.")
                    else:
                        print(f"Final video not found for combining with source: {final_video_path_for_combine}")
                else:
                    print(f"Input video path not found: {input_video_path}")
            except Exception as e_combine_outer: # Use a different exception variable name
                print(f"Error combining videos: {e_combine_outer}")
                traceback.print_exc()
    
        # Combine input frames (resized and center cropped if needed) with final generated history_pixels tensor sequentially ---
        # This creates ID_combined.mp4
        # RT_BORG: Be sure to add this check if we decide to retain the processed input frames for "small" input videos 
        # and job_params.get('input_frames_resized_np') is not None 
        if (model_type == "Video" or model_type == "Video F1") and combine_with_source and history_pixels is not None:
            print(f"Creating combined video ({job_id}_combined.mp4) with processed input frames and generated history_pixels tensor...")
            try:
                # input_frames_resized_np = job_params.get('input_frames_resized_np')

                # RT_BORG: I cringe calliing methods on BaseModelGenerator that only exist on VideoBaseGenerator, until we refactor
                input_frames_resized_np, fps, target_height, target_width = studio_module.current_generator.extract_video_frames(
                    is_for_encode=False,
                    video_path=job_params['input_image'],
                    resolution=job_params['resolutionW'],
                    no_resize=False,
                    input_files_dir=job_params['input_files_dir']
                )

                # history_pixels is (B, C, T, H, W), float32, [-1,1], on CPU
                if input_frames_resized_np is not None and history_pixels.numel() > 0 : # Check if history_pixels is not empty
                    combined_sequential_output_filename = os.path.join(output_dir, f'{job_id}_combined.mp4')
                    
                    # fps variable should be from the video_encode call earlier.
                    input_video_fps_for_combine = fps 
                    current_crf = settings.get("mp4_crf", 16)

                    # Call the new function from video_tools.py
                    combined_sequential_result_path = combine_videos_sequentially_from_tensors(
                        processed_input_frames_np=input_frames_resized_np,
                        generated_frames_pt=history_pixels,
                        output_path=combined_sequential_output_filename,
                        target_fps=input_video_fps_for_combine,
                        crf_value=current_crf
                    )
                    if combined_sequential_result_path:
                        stream_to_use.output_queue.push(('file', combined_sequential_result_path))
            except Exception as e:
                print(f"Error creating combined video ({job_id}_combined.mp4): {e}")
                traceback.print_exc()
    
    # Final verification of LoRA state
    if studio_module.current_generator and studio_module.current_generator.transformer:
        # Verify LoRA state
        has_loras = False
        if hasattr(studio_module.current_generator.transformer, 'peft_config'):
            adapter_names = list(studio_module.current_generator.transformer.peft_config.keys()) if studio_module.current_generator.transformer.peft_config else []
            if adapter_names:
                has_loras = True
                print(f"Transformer has LoRAs: {', '.join(adapter_names)}")
            else:
                print(f"Transformer has no LoRAs in peft_config")
        else:
            print(f"Transformer has no peft_config attribute")
            
        # Check for any LoRA modules
        for name, module in studio_module.current_generator.transformer.named_modules():
            if hasattr(module, 'lora_A') and module.lora_A:
                has_loras = True
            if hasattr(module, 'lora_B') and module.lora_B:
                has_loras = True
                
        if not has_loras:
            print(f"No LoRA components found in transformer")

    stream_to_use.output_queue.push(('end', None))
    return