Spaces:
Paused
Paused
File size: 101,973 Bytes
05fcd0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 |
import gc
import json # for preset loading/saving
import os
import psutil
import sys
import traceback
import types
# --- Standalone Startup & Path Fix ---
# This block runs only when the script is executed directly.
# It sets up the environment for standalone operation.
if __name__ == '__main__':
# Adjust the Python path to include the project root, so local imports work.
modules_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.dirname(modules_dir)
if project_root not in sys.path:
print(f"--- Running Toolbox in Standalone Mode ---")
print(f"Adding project root to sys.path: {project_root}")
sys.path.insert(0, project_root)
# Set the GRADIO_TEMP_DIR *before* Gradio is imported.
# This forces the standalone app to use the same temp folder as the main app.
from modules.settings import Settings
_settings_for_env = Settings()
_gradio_temp_dir = _settings_for_env.get("gradio_temp_dir")
if _gradio_temp_dir:
os.environ['GRADIO_TEMP_DIR'] = os.path.abspath(_gradio_temp_dir)
print(f"Set GRADIO_TEMP_DIR for standalone mode: {os.environ['GRADIO_TEMP_DIR']}")
del _settings_for_env, _gradio_temp_dir
# Suppress persistent Windows asyncio proactor errors when running standalone.
if os.name == 'nt':
import asyncio
from functools import wraps
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
def silence_event_loop_closed(func):
@wraps(func)
def wrapper(self, *args, **kwargs):
try:
return func(self, *args, **kwargs)
except RuntimeError as e:
if str(e) != 'Event loop is closed': raise
return wrapper
if hasattr(asyncio.proactor_events._ProactorBasePipeTransport, '_call_connection_lost'):
asyncio.proactor_events._ProactorBasePipeTransport._call_connection_lost = silence_event_loop_closed(
asyncio.proactor_events._ProactorBasePipeTransport._call_connection_lost)
# --- Third-Party Library Imports ---
import devicetorch
import gradio as gr
import imageio # Added for reading frame dimensions
import torch
from torchvision.transforms.functional import rgb_to_grayscale
# --- Patch for basicsr (must run after torchvision import) ---
functional_tensor_mod = types.ModuleType('functional_tensor')
functional_tensor_mod.rgb_to_grayscale = rgb_to_grayscale
sys.modules.setdefault('torchvision.transforms.functional_tensor', functional_tensor_mod)
# --- Local Application Imports ---
from modules.settings import Settings
from modules.toolbox.esrgan_core import ESRGANUpscaler
from modules.toolbox.message_manager import MessageManager
from modules.toolbox.rife_core import RIFEHandler
from modules.toolbox.setup_ffmpeg import setup_ffmpeg
from modules.toolbox.system_monitor import SystemMonitor
from modules.toolbox.toolbox_processor import VideoProcessor
# Attempt to import helper, with a fallback if it's missing.
try:
from diffusers_helper.memory import cpu
except ImportError:
print("WARNING: Could not import cpu from diffusers_helper.memory. Falling back to torch.device('cpu')")
cpu = torch.device('cpu')
# Check if FFmpeg is set up, if not, run the setup
script_dir = os.path.dirname(os.path.abspath(__file__))
# Construct the correct path to the target bin directory.
bin_dir = os.path.join(script_dir, 'toolbox', 'bin')
ffmpeg_exe_name = 'ffmpeg.exe' if sys.platform == "win32" else 'ffmpeg'
ffmpeg_full_path = os.path.join(bin_dir, ffmpeg_exe_name)
# Check if the executable exists at the correct location.
if not os.path.exists(ffmpeg_full_path):
print(f"Bundled FFmpeg not found in '{bin_dir}'. Running one-time setup...")
setup_ffmpeg()
tb_message_mgr = MessageManager()
settings_instance = Settings()
tb_processor = VideoProcessor(tb_message_mgr, settings_instance) # Pass settings to VideoProcessor
# --- Default Filter Values ---
TB_DEFAULT_FILTER_SETTINGS = {
"brightness": 0, "contrast": 1, "saturation": 1, "temperature": 0,
"sharpen": 0, "blur": 0, "denoise": 0, "vignette": 0,
"s_curve_contrast": 0, "film_grain_strength": 0
}
# --- Filter Presets Handling ---
TB_BUILT_IN_PRESETS_FILE = os.path.join(os.path.dirname(os.path.abspath(__file__)), "toolbox", "data", "filter_presets.json")
tb_filter_presets_data = {} # Will be populated by _initialize_presets
def _initialize_presets():
global tb_filter_presets_data
default_preset_map_for_creation = {
"none": TB_DEFAULT_FILTER_SETTINGS.copy(),
"cinematic": {"brightness": -5, "contrast": 1.3, "saturation": 0.9, "temperature": 20, "vignette": 10, "sharpen": 1.2, "blur": 0, "denoise": 0, "s_curve_contrast": 15, "film_grain_strength": 5},
"vintage": {"brightness": 5, "contrast": 1.1, "saturation": 0.7, "temperature": 15, "vignette": 30, "sharpen": 0, "blur": 0.5, "denoise": 0, "s_curve_contrast": 10, "film_grain_strength": 10},
"cool": {"brightness": 0, "contrast": 1.2, "saturation": 1.1, "temperature": -15, "vignette": 0, "sharpen": 1.0, "blur": 0, "denoise": 0, "s_curve_contrast": 5, "film_grain_strength": 0},
"warm": {"brightness": 5, "contrast": 1.1, "saturation": 1.2, "temperature": 20, "vignette": 0, "sharpen": 0, "blur": 0, "denoise": 0, "s_curve_contrast": 5, "film_grain_strength": 0},
"dramatic": {"brightness": -5, "contrast": 1.2, "saturation": 0.9, "temperature": -10, "vignette": 20, "sharpen": 1.2, "blur": 0, "denoise": 0, "s_curve_contrast": 20, "film_grain_strength": 8}
}
try:
os.makedirs(os.path.dirname(TB_BUILT_IN_PRESETS_FILE), exist_ok=True)
if not os.path.exists(TB_BUILT_IN_PRESETS_FILE):
tb_message_mgr.add_message(f"Presets file not found. Creating with default presets: {TB_BUILT_IN_PRESETS_FILE}", "INFO")
with open(TB_BUILT_IN_PRESETS_FILE, 'w') as f:
json.dump(default_preset_map_for_creation, f, indent=4)
tb_filter_presets_data = default_preset_map_for_creation
tb_message_mgr.add_success("Default presets file created.")
else:
with open(TB_BUILT_IN_PRESETS_FILE, 'r') as f:
tb_filter_presets_data = json.load(f)
# Ensure "none" preset always exists and uses TB_DEFAULT_FILTER_SETTINGS
if "none" not in tb_filter_presets_data or tb_filter_presets_data["none"] != TB_DEFAULT_FILTER_SETTINGS:
tb_filter_presets_data["none"] = TB_DEFAULT_FILTER_SETTINGS.copy()
# Optionally re-save if "none" was missing or incorrect, or just use in-memory fix
# with open(TB_BUILT_IN_PRESETS_FILE, 'w') as f:
# json.dump(tb_filter_presets_data, f, indent=4)
tb_message_mgr.add_message(f"Filter presets loaded from {TB_BUILT_IN_PRESETS_FILE}.", "INFO")
except Exception as e:
tb_message_mgr.add_error(f"Error with filter presets file {TB_BUILT_IN_PRESETS_FILE}: {e}. Using in-memory defaults.")
tb_filter_presets_data = default_preset_map_for_creation
_initialize_presets() # Call once when the script module is loaded
def tb_update_messages():
return tb_message_mgr.get_messages()
def tb_handle_update_monitor(monitor_enabled): # This updates the TOOLBOX TAB's monitor
if not monitor_enabled:
return gr.update() # Do nothing if disabled to save resources.
return SystemMonitor.get_system_info()
def tb_handle_analyze_video(video_path):
tb_message_mgr.clear()
analysis = tb_processor.tb_analyze_video_input(video_path)
# Return a third value to control the accordion's 'open' state
return tb_update_messages(), analysis, gr.update(open=True)
def tb_handle_process_frames(video_path, fps_mode, speed_factor, use_streaming, progress=gr.Progress()):
tb_message_mgr.clear()
output_video = tb_processor.tb_process_frames(video_path, fps_mode, speed_factor, use_streaming, progress)
return output_video, tb_update_messages()
def tb_handle_create_loop(video_path, loop_type, num_loops, progress=gr.Progress()):
tb_message_mgr.clear()
output_video = tb_processor.tb_create_loop(video_path, loop_type, num_loops, progress)
return output_video, tb_update_messages()
def tb_update_filter_sliders_from_preset(preset_name):
preset_settings = tb_filter_presets_data.get(preset_name)
if not preset_settings:
tb_message_mgr.add_warning(f"Preset '{preset_name}' not found. Using 'none' settings.")
preset_settings = tb_filter_presets_data.get("none", TB_DEFAULT_FILTER_SETTINGS.copy())
final_settings = TB_DEFAULT_FILTER_SETTINGS.copy()
final_settings.update(preset_settings)
ordered_values = []
for key in TB_DEFAULT_FILTER_SETTINGS.keys():
ordered_values.append(final_settings.get(key, TB_DEFAULT_FILTER_SETTINGS[key]))
return tuple(ordered_values)
def tb_handle_reset_all_filters():
tb_message_mgr.add_message("Filter sliders reset to default 'none' values.")
none_settings_values = tb_update_filter_sliders_from_preset("none")
return "none", "", *none_settings_values, tb_update_messages()
def tb_handle_save_user_preset(new_preset_name_str, *slider_values):
global tb_filter_presets_data; tb_message_mgr.clear()
if not new_preset_name_str or not new_preset_name_str.strip():
tb_message_mgr.add_warning("Preset name cannot be empty."); return gr.update(), tb_update_messages(), gr.update()
clean_preset_name = new_preset_name_str.strip()
if clean_preset_name.lower() == "none":
tb_message_mgr.add_warning("'none' is a protected preset and cannot be overwritten.")
return gr.update(), tb_update_messages(), gr.update(value="") # Clear input box
new_preset_values = dict(zip(TB_DEFAULT_FILTER_SETTINGS.keys(), slider_values))
preset_existed = clean_preset_name in tb_filter_presets_data
tb_filter_presets_data[clean_preset_name] = new_preset_values
try:
with open(TB_BUILT_IN_PRESETS_FILE, 'w') as f: json.dump(tb_filter_presets_data, f, indent=4)
tb_message_mgr.add_success(f"Preset '{clean_preset_name}' {'updated' if preset_existed else 'saved'} successfully!")
updated_choices = list(tb_filter_presets_data.keys())
if "none" in updated_choices: updated_choices.remove("none"); updated_choices.sort(); updated_choices.insert(0, "none")
else: updated_choices.sort()
return gr.update(choices=updated_choices, value=clean_preset_name), tb_update_messages(), ""
except Exception as e:
tb_message_mgr.add_error(f"Error saving preset '{clean_preset_name}': {e}")
_initialize_presets()
return gr.update(), tb_update_messages(), gr.update(value=new_preset_name_str)
def tb_handle_delete_user_preset(preset_name_to_delete):
global tb_filter_presets_data; tb_message_mgr.clear()
if not preset_name_to_delete or not preset_name_to_delete.strip():
tb_message_mgr.add_warning("No preset name to delete (select from dropdown or type)."); return gr.update(), tb_update_messages(), gr.update(), *tb_update_filter_sliders_from_preset("none")
clean_preset_name = preset_name_to_delete.strip()
if clean_preset_name.lower() == "none":
tb_message_mgr.add_warning("'none' preset cannot be deleted."); return gr.update(), tb_update_messages(), gr.update(value="none"), *tb_update_filter_sliders_from_preset("none")
if clean_preset_name not in tb_filter_presets_data:
tb_message_mgr.add_warning(f"Preset '{clean_preset_name}' not found."); return gr.update(), tb_update_messages(), gr.update(), *tb_update_filter_sliders_from_preset("none")
del tb_filter_presets_data[clean_preset_name]
try:
with open(TB_BUILT_IN_PRESETS_FILE, 'w') as f: json.dump(tb_filter_presets_data, f, indent=4)
tb_message_mgr.add_success(f"Preset '{clean_preset_name}' deleted.")
updated_choices = list(tb_filter_presets_data.keys())
if "none" in updated_choices: updated_choices.remove("none"); updated_choices.sort(); updated_choices.insert(0, "none")
else: updated_choices.sort()
sliders_reset_values = tb_update_filter_sliders_from_preset("none")
return gr.update(choices=updated_choices, value="none"), tb_update_messages(), "", *sliders_reset_values
except Exception as e:
tb_message_mgr.add_error(f"Error deleting preset '{clean_preset_name}' from file: {e}")
_initialize_presets();
current_choices = list(tb_filter_presets_data.keys())
if "none" in current_choices: current_choices.remove("none"); current_choices.sort(); current_choices.insert(0, "none")
else: current_choices.sort()
selected_val_after_error = clean_preset_name if clean_preset_name in current_choices else "none"
sliders_after_error_values = tb_update_filter_sliders_from_preset(selected_val_after_error)
return gr.update(choices=current_choices, value=selected_val_after_error), tb_update_messages(), gr.update(value=selected_val_after_error), *sliders_after_error_values
# --- Workflow Presets Handling ---
TB_WORKFLOW_PRESETS_FILE = os.path.join(os.path.dirname(os.path.abspath(__file__)), "toolbox", "data", "workflow_presets.json")
tb_workflow_presets_data = {} # Will be populated by _initialize_workflow_presets
# This helper function creates a dictionary of all default parameter values
def _get_default_workflow_params():
# Gets default values from filter settings and adds other op defaults
params = TB_DEFAULT_FILTER_SETTINGS.copy()
params.update({
"upscale_model": list(tb_processor.esrgan_upscaler.supported_models.keys())[0] if tb_processor.esrgan_upscaler.supported_models else None,
"upscale_factor": 2.0,
"tile_size": 0,
"enhance_face": False,
"denoise_strength": 0.5,
"upscale_use_streaming": False,
"frames_use_streaming": False,
"fps_mode": "No Interpolation",
"speed_factor": 1.0,
"loop_type": "loop",
"num_loops": 1,
"export_format": "MP4",
"export_quality": 85,
"export_max_width": 1024,
})
return params
def _initialize_workflow_presets():
global tb_workflow_presets_data
# The 'None' preset stores default values for all controls and no active steps
default_workflow_map = {
"None": {
"active_steps": [],
"params": _get_default_workflow_params()
}
}
try:
# Ensure the directory exists
os.makedirs(os.path.dirname(TB_WORKFLOW_PRESETS_FILE), exist_ok=True)
if not os.path.exists(TB_WORKFLOW_PRESETS_FILE):
tb_message_mgr.add_message(f"Workflow presets file not found. Creating with a default 'None' preset: {TB_WORKFLOW_PRESETS_FILE}", "INFO")
with open(TB_WORKFLOW_PRESETS_FILE, 'w') as f:
json.dump(default_workflow_map, f, indent=4)
tb_workflow_presets_data = default_workflow_map
else:
with open(TB_WORKFLOW_PRESETS_FILE, 'r') as f:
tb_workflow_presets_data = json.load(f)
# Ensure "None" preset always exists and is up-to-date
tb_workflow_presets_data["None"] = default_workflow_map["None"]
tb_message_mgr.add_message(f"Workflow presets loaded from {TB_WORKFLOW_PRESETS_FILE}.", "INFO")
except Exception as e:
tb_message_mgr.add_error(f"Error with workflow presets file {TB_WORKFLOW_PRESETS_FILE}: {e}. Using in-memory defaults.")
tb_workflow_presets_data = default_workflow_map
_initialize_workflow_presets() # Call once when the script module is loaded
def tb_handle_apply_filters(video_path, brightness, contrast, saturation, temperature,
sharpen, blur, denoise, vignette,
s_curve_contrast, film_grain_strength,
progress=gr.Progress()):
tb_message_mgr.clear()
output_video = tb_processor.tb_apply_filters(video_path, brightness, contrast, saturation, temperature,
sharpen, blur, denoise, vignette,
s_curve_contrast, film_grain_strength, progress)
return output_video, tb_update_messages()
def tb_handle_reassemble_frames(
frames_source_folder,
output_fps,
output_video_name,
progress=gr.Progress()
):
tb_message_mgr.clear()
tb_message_mgr.add_message("Preparing to reassemble from Frames Studio...")
if not frames_source_folder:
tb_message_mgr.add_warning("No source folder selected in the Frames Studio dropdown.")
return None, tb_update_messages()
frames_path_to_use = os.path.join(tb_processor.extracted_frames_target_path, frames_source_folder)
source_description = f"Frames Studio folder '{frames_source_folder}'"
if not os.path.isdir(frames_path_to_use):
tb_message_mgr.add_error(f"Selected folder not found: {frames_path_to_use}")
return None, tb_update_messages()
tb_message_mgr.add_message(f"Attempting to reassemble frames from {source_description}.")
output_video = tb_processor.tb_reassemble_frames_to_video(
frames_path_to_use,
output_fps,
output_base_name_override=output_video_name,
progress=progress
)
return output_video, tb_update_messages()
def tb_handle_extract_frames(video_path, extraction_rate, progress=gr.Progress()):
tb_message_mgr.clear()
tb_processor.tb_extract_frames(video_path, int(extraction_rate), progress)
return tb_update_messages()
def tb_handle_refresh_extracted_folders():
folders = tb_processor.tb_get_extracted_frame_folders()
clear_btn_update = gr.update(interactive=False)
# When refreshing, clear the gallery and info box
return gr.update(choices=folders, value=None), tb_update_messages(), clear_btn_update, None, "Select a folder and click 'Load'."
def tb_handle_clear_selected_folder(selected_folder_to_delete):
tb_message_mgr.clear()
if not selected_folder_to_delete:
tb_message_mgr.add_warning("No folder selected from the dropdown to delete.")
return tb_update_messages(), gr.update(), gr.update(), gr.update(), gr.update(), gr.update()
success = tb_processor.tb_delete_extracted_frames_folder(selected_folder_to_delete)
updated_folders = tb_processor.tb_get_extracted_frame_folders()
# Return updates for all components: messages, dropdown, gallery, info box, and the two frame action buttons.
return (
tb_update_messages(),
gr.update(choices=updated_folders, value=None), # Update dropdown
None, # Clear the gallery
None, # Clear the info box
gr.update(interactive=False), # Disable save button
gr.update(interactive=False) # Disable delete button
)
def tb_handle_load_frames_to_studio(selected_folder):
tb_message_mgr.clear()
if not selected_folder:
tb_message_mgr.add_warning("No folder selected to load into the studio.")
return tb_update_messages(), None, "Select a folder and click 'Load'."
frame_files_list = tb_processor.tb_get_frames_from_folder(selected_folder)
if not frame_files_list:
tb_message_mgr.add_warning(f"No image files found in '{selected_folder}'.")
return tb_update_messages(), None, "No frames found in this folder."
tb_message_mgr.add_success(f"Loaded {len(frame_files_list)} frames from '{selected_folder}' into the studio.")
return tb_update_messages(), frame_files_list, "Select a frame from the gallery."
def tb_handle_frame_select(evt: gr.SelectData):
"""Handles frame selection in the gallery, providing more detailed info."""
# The gallery's select event (evt.value) is a dictionary like:
# {'image': {'path': '...', 'url': '...'}, 'caption': None}
if evt.value and 'image' in evt.value and 'path' in evt.value['image']:
# CORRECT WAY to access the path string
selected_image_path = evt.value['image']['path']
# Now 'selected_image_path' is a string, so os.path.basename will work correctly.
filename = os.path.basename(selected_image_path)
info_text = f"File: {filename}"
try:
# Add image dimensions to the info box for better context
img = imageio.imread(selected_image_path)
h, w, *_ = img.shape
info_text += f"\nDimensions: {w}x{h}"
except Exception as e:
tb_message_mgr.add_warning(f"Could not read dimensions for {filename}: {e}")
# 1. Return the info string to the gr.Textbox component.
# 2 & 3. Return updates to enable the buttons.
return info_text, gr.update(interactive=True), gr.update(interactive=True)
else:
# This part handles deselection or malformed event data
return "Select a frame...", gr.update(interactive=False), gr.update(interactive=False)
def _get_frame_path_from_ui(selected_folder, frame_info_str):
"""Helper to safely parse UI components to get a full file path."""
if not selected_folder or not frame_info_str:
return None, "Missing folder or frame selection."
# Extract filename from the first line of the info string "File: frame_0000.png"
first_line = frame_info_str.splitlines()[0]
if not first_line.startswith("File: "):
return None, "Invalid frame info format."
filename_to_process = first_line.replace("File: ", "").strip()
full_path = os.path.join(tb_processor.extracted_frames_target_path, selected_folder, filename_to_process)
return full_path, None
def tb_handle_delete_and_refresh_gallery(selected_folder, frame_info_str):
"""
Deletes the selected frame, gets the updated frame list, and explicitly
determines the next frame to select to create a seamless workflow.
"""
if not selected_folder:
tb_message_mgr.add_warning("Cannot delete frame: No folder selected.")
return gr.update(), gr.update(), gr.update(), gr.update(), tb_update_messages()
full_path_to_delete, error = _get_frame_path_from_ui(selected_folder, frame_info_str)
if error:
tb_message_mgr.add_error(f"Could not identify frame to delete: {error}")
return gr.update(), gr.update(), gr.update(), gr.update(), tb_update_messages()
old_frame_list = tb_processor.tb_get_frames_from_folder(selected_folder)
try:
deleted_index = old_frame_list.index(full_path_to_delete)
except ValueError:
tb_message_mgr.add_error(f"Consistency error: Frame '{os.path.basename(full_path_to_delete)}' not found in its folder's frame list before deletion.")
# As a fallback, just delete and refresh to a safe state
tb_processor.tb_delete_single_frame(full_path_to_delete)
updated_frame_list_fallback = tb_processor.tb_get_frames_from_folder(selected_folder)
return updated_frame_list_fallback, "Select a frame...", gr.update(interactive=False), gr.update(interactive=False), tb_update_messages()
tb_processor.tb_delete_single_frame(full_path_to_delete) # This logs the success message
new_frame_list = tb_processor.tb_get_frames_from_folder(selected_folder)
if not new_frame_list:
# The folder is now empty
info_text = "All frames have been deleted."
return [], info_text, gr.update(interactive=False), gr.update(interactive=False), tb_update_messages()
else:
# Determine the index of the next frame to highlight.
# This keeps the selection at the same position, or on the new last item if the old last item was deleted.
next_selection_index = min(deleted_index, len(new_frame_list) - 1)
# Explicitly generate the info for the frame that will now be selected.
new_selected_path = new_frame_list[next_selection_index]
filename = os.path.basename(new_selected_path)
info_text = f"File: {filename}"
try:
img = imageio.imread(new_selected_path)
h, w, *_ = img.shape
info_text += f"\nDimensions: {w}x{h}"
except Exception as e:
tb_message_mgr.add_warning(f"Could not read dimensions for new selection {filename}: {e}")
# Return all the new state information to update the UI in one go.
return new_frame_list, info_text, gr.update(interactive=True), gr.update(interactive=True), tb_update_messages()
def tb_handle_save_selected_frame(selected_folder, frame_info_str):
"""Handler for the save button. Calls the backend processor."""
tb_message_mgr.clear()
full_path, error = _get_frame_path_from_ui(selected_folder, frame_info_str)
if error:
tb_message_mgr.add_error(error)
return error, tb_update_messages()
status_message = tb_processor.tb_save_single_frame(full_path)
# The message is generated inside the processor, we just need to return it.
return status_message, tb_update_messages()
# --- END: Frames Studio Handlers ---
# --- START: Workflow Preset Handlers ---
def tb_handle_save_workflow_preset(preset_name, active_steps, *params):
global tb_workflow_presets_data
tb_message_mgr.clear()
if not preset_name or not preset_name.strip():
tb_message_mgr.add_warning("Workflow Preset name cannot be empty.")
return gr.update(), gr.update(value=preset_name), tb_update_messages()
clean_name = preset_name.strip()
# This key list MUST match the order of components in _ALL_PIPELINE_PARAMS_COMPONENTS_
param_keys = [
# Upscale
"upscale_model", "upscale_factor", "tile_size",
"enhance_face", "denoise_strength", "upscale_use_streaming",
# Frame Adjust
"fps_mode", "speed_factor", "frames_use_streaming",
# Loop
"loop_type", "num_loops",
# Filters (using the ordered keys from the constant)
*list(TB_DEFAULT_FILTER_SETTINGS.keys()),
# Export
"export_format", "export_quality", "export_max_width"
]
# Pack the parameters into a dictionary
params_dict = dict(zip(param_keys, params))
new_preset_data = {
"active_steps": active_steps,
"params": params_dict
}
preset_existed = clean_name in tb_workflow_presets_data
tb_workflow_presets_data[clean_name] = new_preset_data
try:
with open(TB_WORKFLOW_PRESETS_FILE, 'w') as f:
json.dump(tb_workflow_presets_data, f, indent=4)
tb_message_mgr.add_success(f"Workflow Preset '{clean_name}' {'updated' if preset_existed else 'saved'} successfully!")
# Update dropdown choices
updated_choices = sorted([k for k in tb_workflow_presets_data.keys() if k != "None"])
updated_choices.insert(0, "None")
return gr.update(choices=updated_choices, value=clean_name), "", tb_update_messages()
except Exception as e:
tb_message_mgr.add_error(f"Error saving workflow preset '{clean_name}': {e}")
# Revert to last known good state
_initialize_workflow_presets()
return gr.update(), gr.update(value=preset_name), tb_update_messages()
except Exception as e:
tb_message_mgr.add_error(f"Error saving workflow preset '{clean_name}': {e}")
# Revert to last known good state
_initialize_workflow_presets()
return gr.update(), gr.update(value=preset_name), tb_update_messages()
def tb_handle_load_workflow_preset(preset_name):
tb_message_mgr.clear()
preset_data = tb_workflow_presets_data.get(preset_name)
if not preset_data:
tb_message_mgr.add_warning(f"Workflow preset '{preset_name}' not found. Loading 'None' state.")
preset_data = tb_workflow_presets_data.get("None")
# Get the default parameter structure to ensure all keys are present
final_params = _get_default_workflow_params()
# Update with the loaded preset's parameters
final_params.update(preset_data.get("params", {}))
active_steps = preset_data.get("active_steps", [])
# The order of values returned MUST match the order of components in the event handler's output list
ordered_values = [
# Checkbox
active_steps,
# Upscale
final_params["upscale_model"], final_params["upscale_factor"], final_params["tile_size"],
final_params["enhance_face"], final_params["denoise_strength"],
final_params["upscale_use_streaming"],
# Frame Adjust
final_params["fps_mode"], final_params["speed_factor"],
final_params["frames_use_streaming"],
# Loop
final_params["loop_type"], final_params["num_loops"],
# Filters (must be in the same order as _ORDERED_FILTER_SLIDERS_)
final_params["brightness"], final_params["contrast"], final_params["saturation"],
final_params["temperature"], final_params["sharpen"], final_params["blur"],
final_params["denoise"], final_params["vignette"], final_params["s_curve_contrast"],
final_params["film_grain_strength"],
# Export
final_params["export_format"], final_params["export_quality"], final_params["export_max_width"]
]
tb_message_mgr.add_message(f"Loaded workflow preset: '{preset_name}'")
# Also return the preset name to the input box, and the updated messages
return preset_name, *ordered_values, tb_update_messages()
def tb_handle_delete_workflow_preset(preset_name):
global tb_workflow_presets_data
tb_message_mgr.clear()
if not preset_name or not preset_name.strip():
tb_message_mgr.add_warning("No workflow preset name provided to delete.")
# The number of outputs for an event handler MUST be consistent.
# There are 28 outputs: dropdown, namebox, chkbox, 24 params, message.
# The star-expansion covers the chkbox (1) + params (24) = 25 components.
return gr.update(), gr.update(), *([gr.update()] * 25), tb_update_messages()
clean_name = preset_name.strip()
if clean_name == "None":
tb_message_mgr.add_warning("'None' preset cannot be deleted.")
return gr.update(value="None"), gr.update(), *([gr.update()] * 25), tb_update_messages()
if clean_name not in tb_workflow_presets_data:
tb_message_mgr.add_warning(f"Workflow preset '{clean_name}' not found.")
return gr.update(), gr.update(), *([gr.update()] * 25), tb_update_messages()
del tb_workflow_presets_data[clean_name]
try:
with open(TB_WORKFLOW_PRESETS_FILE, 'w') as f:
json.dump(tb_workflow_presets_data, f, indent=4)
tb_message_mgr.add_success(f"Workflow preset '{clean_name}' deleted.")
updated_choices = sorted([k for k in tb_workflow_presets_data.keys() if k != "None"])
updated_choices.insert(0, "None")
# After deleting, load the "None" state to get the reset values
none_state_outputs = tb_handle_load_workflow_preset("None")
# The rest of the values come from the 'load' function, but we skip its first value (which was also for the textbox)
return gr.update(choices=updated_choices, value="None"), "", *none_state_outputs[1:]
except Exception as e:
tb_message_mgr.add_error(f"Error deleting workflow preset '{clean_name}': {e}")
_initialize_workflow_presets() # Revert
# On error, we don't know the state, so just update the messages
return gr.update(), gr.update(value=clean_name), *([gr.update()] * 25), tb_update_messages()
def tb_handle_reset_workflow_to_defaults():
# This function loads the 'None' preset to get the reset values for most components...
load_outputs = tb_handle_load_workflow_preset("None")
# ...then it PREPENDS an update specifically for the dropdown menu.
# The first value is for the dropdown, the rest are for the components in _WORKFLOW_LOAD_OUTPUTS_
return gr.update(value="None"), *load_outputs
# --- END: New Workflow Preset Handlers ---
def tb_handle_start_pipeline(
# 1. Active Tab Index
active_tab_index,
# 2. Selected Operations
selected_ops,
# Inputs
single_video_path, batch_video_paths,
# Upscale
model_key, output_scale_factor, tile_size, enhance_face, denoise_strength, upscale_use_streaming,
# Frame Adjust
fps_mode, speed_factor, frames_use_streaming,
# Loop
loop_type, num_loops,
# Filters
brightness, contrast, saturation, temperature, sharpen, blur, denoise, vignette, s_curve_contrast, film_grain_strength,
# Export
export_format, export_quality, export_max_width,
progress=gr.Progress()
):
tb_message_mgr.clear()
input_paths_to_process = []
if active_tab_index == 1 and batch_video_paths and len(batch_video_paths) > 0:
# Process batch only if the batch tab is active and it has files
input_paths_to_process = batch_video_paths
tb_message_mgr.add_message(f"Starting BATCH pipeline for {len(input_paths_to_process)} videos (from active Batch tab).")
elif active_tab_index == 0 and single_video_path:
# Process single video only if the single tab is active and it has a video
input_paths_to_process = [single_video_path]
tb_message_mgr.add_message(f"Starting SINGLE video pipeline for {os.path.basename(single_video_path)} (from active Single tab).")
else:
# Handle cases where the active tab is empty
if active_tab_index == 1:
tb_message_mgr.add_warning("Batch Input tab is active, but no files were provided.")
else: # active_tab_index == 0 or default
tb_message_mgr.add_warning("Single Video Input tab is active, but no video was provided.")
return None, tb_update_messages()
if not selected_ops:
tb_message_mgr.add_warning("No operations selected for the pipeline. Please check at least one box in 'Pipeline Steps'.")
return None, tb_update_messages()
# Map checkbox labels to operation keys
op_map = {
"upscale": "upscale",
"frames": "frame_adjust",
"loop": "loop",
"filters": "filters",
"export": "export"
}
# Define the execution order
execution_order = ["upscale", "frame_adjust", "filters", "loop", "export"]
pipeline_config = {"operations": []}
# Build the pipeline configuration based on user selections in the correct order
for op_key in execution_order:
# Find the display name from the op_map that corresponds to the current key
display_name = next((d_name for d_name, k_name in op_map.items() if k_name == op_key), None)
if display_name and display_name in selected_ops:
if op_key == "upscale":
pipeline_config["operations"].append({
"name": "upscale",
"params": {
"model_key": model_key,
"output_scale_factor_ui": float(output_scale_factor),
"tile_size": int(tile_size),
"enhance_face": enhance_face,
"denoise_strength_ui": denoise_strength,
"use_streaming": upscale_use_streaming
}
})
elif op_key == "frame_adjust":
pipeline_config["operations"].append({
"name": "frame_adjust",
"params": {
"target_fps_mode": fps_mode,
"speed_factor": speed_factor,
"use_streaming": frames_use_streaming
}
})
elif op_key == "loop":
pipeline_config["operations"].append({
"name": "loop",
"params": { "loop_type": loop_type, "num_loops": num_loops }
})
elif op_key == "filters":
pipeline_config["operations"].append({
"name": "filters",
"params": {
"brightness": brightness, "contrast": contrast, "saturation": saturation, "temperature": temperature,
"sharpen": sharpen, "blur": blur, "denoise": denoise, "vignette": vignette,
"s_curve_contrast": s_curve_contrast, "film_grain_strength": film_grain_strength
}
})
elif op_key == "export":
pipeline_config["operations"].append({
"name": "export",
"params": {
"export_format": export_format,
"quality_slider": int(export_quality),
"max_width": int(export_max_width)
}
})
# Call the batch processor, which now handles both single and batch jobs
final_video_path = tb_processor.tb_process_video_batch(input_paths_to_process, pipeline_config, progress)
# Return the final video path to the player (will be None for batch, path for single)
return final_video_path, tb_update_messages()
def tb_update_active_tab_index(evt: gr.SelectData):
if not evt:
return 0 # Default to the first tab (Single Video) if event data is missing
return evt.index
index = evt.index
tab_name = "Single Video" if index == 0 else "Batch Video"
tb_message_mgr.add_message(f"DEBUG: Active tab changed to -> {tab_name} (Index: {index})")
# Return the new index for the state and the updated messages
return index, tb_update_messages()
def tb_handle_upscale_video(video_path, model_key_selected, output_scale_factor_from_slider, tile_size, enhance_face_ui, denoise_strength_from_slider, use_streaming, progress=gr.Progress()):
tb_message_mgr.clear()
if video_path is None:
tb_message_mgr.add_warning("No input video selected for upscaling.")
return None, tb_update_messages()
if not model_key_selected:
tb_message_mgr.add_warning("No upscale model selected.")
return None, tb_update_messages()
try:
tile_size_int = int(tile_size)
except ValueError:
tb_message_mgr.add_error(f"Invalid tile size value: {tile_size}. Using None (0).")
tile_size_int = 0
try:
output_scale_factor_float = float(output_scale_factor_from_slider)
if not (output_scale_factor_float >= 0.25):
tb_message_mgr.add_error(f"Invalid output scale factor: {output_scale_factor_from_slider:.2f}. Must be >= 0.25.")
return None, tb_update_messages()
except ValueError:
tb_message_mgr.add_error(f"Invalid output scale factor: {output_scale_factor_from_slider}. Not a valid number.")
return None, tb_update_messages()
output_video = tb_processor.tb_upscale_video(
video_path,
model_key_selected,
float(output_scale_factor_from_slider),
int(tile_size),
enhance_face_ui,
denoise_strength_from_slider,
use_streaming,
progress=progress
)
return output_video, tb_update_messages()
def tb_get_model_info_and_update_scale_slider(model_key_selected: str):
native_scale = 2.0
slider_min = 1.0
slider_max = 2.0
slider_step = 0.05
slider_default_value = 2.0
model_info_text = "Info: Select a model."
slider_label = "Target Upscale Factor"
denoise_slider_visible = False
denoise_slider_value = 0.5
if model_key_selected and model_key_selected in tb_processor.esrgan_upscaler.supported_models:
model_details = tb_processor.esrgan_upscaler.supported_models[model_key_selected]
fetched_native_scale = model_details.get('scale')
description = model_details.get('description', 'No description available.')
if isinstance(fetched_native_scale, (int, float)) and fetched_native_scale > 0:
native_scale = float(fetched_native_scale)
slider_max = native_scale
slider_default_value = native_scale
slider_min = 1.0
if native_scale >= 4.0: slider_step = 0.1
elif native_scale >= 2.0: slider_step = 0.05
model_info_text = f"{description}"
slider_label = f"Target Upscale Factor (Native {native_scale}x)"
if model_key_selected == "RealESR-general-x4v3":
denoise_slider_visible = True
model_info_update = gr.update(value=model_info_text)
outscale_slider_update = gr.update(
minimum=slider_min, maximum=slider_max, step=slider_step,
value=slider_default_value, label=slider_label
)
denoise_slider_update = gr.update(
visible=denoise_slider_visible, value=denoise_slider_value
)
return model_info_update, outscale_slider_update, denoise_slider_update
def tb_get_selected_model_scale_info(model_key_selected):
if model_key_selected and model_key_selected in tb_processor.esrgan_upscaler.supported_models:
model_details = tb_processor.esrgan_upscaler.supported_models[model_key_selected]
scale = model_details.get('N/A')
description = model_details.get('description', 'No description available.')
return f"{description}"
return "Info: Select a model."
def tb_handle_delete_studio_transformer():
tb_message_mgr.clear()
tb_message_mgr.add_message("Attempting to directly access and delete Studio transformer...")
print("Attempting to directly access and delete Studio transformer...")
log_messages_from_action = []
studio_module_instance = None
if '__main__' in sys.modules and hasattr(sys.modules['__main__'], 'current_generator'):
studio_module_instance = sys.modules['__main__']
print("Found studio context in __main__.")
elif 'studio' in sys.modules and hasattr(sys.modules['studio'], 'current_generator'):
studio_module_instance = sys.modules['studio']
print("Found studio context in sys.modules['studio'].")
if studio_module_instance is None:
print("ERROR: Could not find the 'studio' module's active context.")
tb_message_mgr.add_message("ERROR: Could not find the 'studio' module's active context in sys.modules.")
tb_message_mgr.add_error("Deletion Failed: Studio module context not found.")
return tb_update_messages()
job_queue_instance = getattr(studio_module_instance, 'job_queue', None)
JobStatus_enum = getattr(studio_module_instance, 'JobStatus', None)
if job_queue_instance and JobStatus_enum:
current_job_in_queue = getattr(job_queue_instance, 'current_job', None)
if current_job_in_queue and hasattr(current_job_in_queue, 'status') and current_job_in_queue.status == JobStatus_enum.RUNNING:
tb_message_mgr.add_warning("Cannot unload model: A video generation job is currently running.")
tb_message_mgr.add_message("Please wait for the current job to complete or cancel it first using the main interface.")
print("Cannot unload model: A job is currently running in the queue.")
return tb_update_messages()
generator_object_to_delete = getattr(studio_module_instance, 'current_generator', None)
print(f"Direct access: generator_object_to_delete is {type(generator_object_to_delete)}, id: {id(generator_object_to_delete)}")
if generator_object_to_delete is not None:
model_name_str = "Unknown Model"
try:
if hasattr(generator_object_to_delete, 'get_model_name') and callable(generator_object_to_delete.get_model_name):
model_name_str = generator_object_to_delete.get_model_name()
elif hasattr(generator_object_to_delete, 'transformer') and generator_object_to_delete.transformer is not None:
model_name_str = generator_object_to_delete.transformer.__class__.__name__
else:
model_name_str = generator_object_to_delete.__class__.__name__
except Exception:
pass
tb_message_mgr.add_message(f" Deletion of '{model_name_str}' initiated.")
log_messages_from_action.append(f" Found active generator: {model_name_str}. Preparing for deletion.")
print(f"Found active generator: {model_name_str}. Preparing for deletion.")
try:
if hasattr(generator_object_to_delete, 'unload_loras') and callable(generator_object_to_delete.unload_loras):
print(" - LoRAs: Unloading from transformer...")
generator_object_to_delete.unload_loras()
else:
log_messages_from_action.append(" - LoRAs: No unload method found or not applicable.")
if hasattr(generator_object_to_delete, 'transformer') and generator_object_to_delete.transformer is not None:
transformer_object_ref = generator_object_to_delete.transformer
transformer_name_for_log = transformer_object_ref.__class__.__name__
print(f" - Transformer ({transformer_name_for_log}): Preparing for memory operations.")
if hasattr(transformer_object_ref, 'device') and transformer_object_ref.device != cpu:
if hasattr(transformer_object_ref, 'to') and callable(transformer_object_ref.to):
try:
print(f" - Transformer ({transformer_name_for_log}): Moving to CPU...")
transformer_object_ref.to(cpu)
log_messages_from_action.append(" - Transformer moved to CPU.")
print(f" - Transformer ({transformer_name_for_log}): Moved to CPU.")
except Exception as e_cpu:
error_msg_cpu = f" - Transformer ({transformer_name_for_log}): Move to CPU FAILED: {e_cpu}"
log_messages_from_action.append(error_msg_cpu)
print(error_msg_cpu)
else:
log_messages_from_action.append(f" - Transformer ({transformer_name_for_log}): Cannot move to CPU, 'to' method not found.")
print(f" - Transformer ({transformer_name_for_log}): Cannot move to CPU, 'to' method not found.")
elif hasattr(transformer_object_ref, 'device') and transformer_object_ref.device == cpu:
log_messages_from_action.append(" - Transformer already on CPU.")
print(f" - Transformer ({transformer_name_for_log}): Already on CPU.")
else:
log_messages_from_action.append(" - Transformer: Could not determine device or move to CPU.")
print(f" - Transformer ({transformer_name_for_log}): Could not determine device or move to CPU.")
print(f" - Transformer ({transformer_name_for_log}): Removing attribute from generator...")
generator_object_to_delete.transformer = None
print(f" - Transformer ({transformer_name_for_log}): Deleting Python reference...")
del transformer_object_ref
log_messages_from_action.append(" - Transformer reference deleted.")
print(f" - Transformer ({transformer_name_for_log}): Reference deleted.")
else:
log_messages_from_action.append(" - Transformer: Not found or already unloaded.")
print(" - Transformer: Not found or already unloaded.")
generator_class_name_for_log = generator_object_to_delete.__class__.__name__
print(f" - Model Generator ({generator_class_name_for_log}): Setting global reference to None...")
setattr(studio_module_instance, 'current_generator', None)
log_messages_from_action.append(" - 'current_generator' in studio module set to None.")
print(" - Global 'current_generator' in studio module successfully set to None.")
print(f" - Model Generator ({generator_class_name_for_log}): Deleting local Python reference...")
del generator_object_to_delete
print(f" - Model Generator ({generator_class_name_for_log}): Python reference deleted.")
print(" - System: Performing garbage collection and CUDA cache clearing.")
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
log_messages_from_action.append(" - GC and CUDA cache cleared.")
print(" - System: GC and CUDA cache clear completed.")
log_messages_from_action.append(f"β
Deletion of '{model_name_str}' completed successfully from toolbox.")
tb_message_mgr.add_success(f"Deletion of '{model_name_str}' initiated from toolbox.")
except Exception as e_del:
error_msg_del = f"Error during deletion process: {e_del}"
log_messages_from_action.append(f" - {error_msg_del}")
print(f" - {error_msg_del}")
traceback.print_exc()
tb_message_mgr.add_error(f"Deletion Error: {e_del}")
else:
tb_message_mgr.add_message("βΉοΈ No active generator found. Nothing to delete.")
print("No active generator found via direct access. Nothing to delete.")
for msg_item in log_messages_from_action:
tb_message_mgr.add_message(msg_item)
return tb_update_messages()
def tb_handle_manually_save_video(temp_video_path_from_component):
tb_message_mgr.clear()
if not temp_video_path_from_component:
tb_message_mgr.add_warning("No video in the output player to save.")
return temp_video_path_from_component, tb_update_messages()
copied_path = tb_processor.tb_copy_video_to_permanent_storage(temp_video_path_from_component)
if copied_path and os.path.abspath(copied_path) != os.path.abspath(temp_video_path_from_component):
tb_message_mgr.add_success(f"Video successfully copied to permanent storage.")
return temp_video_path_from_component, tb_update_messages()
def tb_handle_clear_temp_files():
tb_message_mgr.clear()
# The processor function now returns a complete summary string.
cleanup_summary = tb_processor.tb_clear_temporary_files()
# Add the summary to the message manager to be displayed in the console.
tb_message_mgr.add_message(cleanup_summary)
# Return None to clear the video player and the updated messages.
return None, tb_update_messages()
def tb_handle_use_processed_as_input(processed_video_path):
if not processed_video_path:
tb_message_mgr.add_warning("No processed video available to use as input.")
# Return updates for all 3 outputs, changing nothing.
return gr.update(), tb_update_messages(), gr.update()
else:
tb_message_mgr.add_message("Moved processed video to input.")
# Return new value for input, messages, and None to clear analysis.
return processed_video_path, tb_update_messages(), None
def tb_handle_join_videos(video_files_list, custom_output_name, progress=gr.Progress()): # Add new parameter
tb_message_mgr.clear()
if not video_files_list:
tb_message_mgr.add_warning("No video files were uploaded to join.")
return None, tb_update_messages()
video_paths = [file.name for file in video_files_list]
# Pass the custom name to the processor
output_video = tb_processor.tb_join_videos(video_paths, custom_output_name, progress)
return output_video, tb_update_messages()
def tb_handle_export_video(video_path, export_format, quality, max_width, custom_name, progress=gr.Progress()):
tb_message_mgr.clear()
if not video_path:
tb_message_mgr.add_warning("No input video in the top-left player to export.")
# Return None for the video player and the message update
return None, tb_update_messages()
# The input video for this operation is ALWAYS the one in the main input player.
output_file = tb_processor.tb_export_video(
video_path,
export_format,
quality,
max_width,
custom_name,
progress
)
# Return the path to the new video and the updated messages.
return output_file, tb_update_messages()
def tb_get_formatted_toolbar_stats():
vram_full_str = "VRAM: N/A"
gpu_full_str = "GPU: N/A"
ram_full_str = "RAM: N/A"
vram_component_visible = False
gpu_component_visible = False
try:
ram_info_psutil = psutil.virtual_memory()
ram_used_gb = ram_info_psutil.used / (1024**3)
ram_total_gb = ram_info_psutil.total / (1024**3)
ram_full_str = f"RAM: {ram_used_gb:.1f}/{round(ram_total_gb)}GB ({round(ram_info_psutil.percent)}%)"
if torch.cuda.is_available():
_, nvidia_metrics, _ = SystemMonitor.get_nvidia_gpu_info()
if nvidia_metrics:
vram_used = nvidia_metrics.get('memory_used_gb', 0.0)
vram_total = nvidia_metrics.get('memory_total_gb', 0.0)
vram_full_str = f"VRAM: {vram_used:.1f}/{round(vram_total)}GB"
vram_component_visible = True
temp = nvidia_metrics.get('temperature', 0.0)
load = nvidia_metrics.get('utilization', 0.0)
gpu_full_str = f"GPU: {temp:.0f}Β°C {load:.0f}%"
gpu_component_visible = True
except Exception as e:
print(f"Error getting system stats values for toolbar (from toolbox_app.py): {e}")
ram_full_str = "RAM: Error"
is_nvidia_expected = torch.cuda.is_available()
if is_nvidia_expected:
vram_full_str = "VRAM: Error"
gpu_full_str = "GPU: Error"
vram_component_visible = True
gpu_component_visible = True
else:
vram_full_str = "VRAM: N/A"
gpu_full_str = "GPU: N/A"
vram_component_visible = False
gpu_component_visible = False
return (
gr.update(value=ram_full_str),
gr.update(value=vram_full_str, visible=vram_component_visible),
gr.update(value=gpu_full_str, visible=gpu_component_visible)
)
# --- Gradio Interface ---
def tb_create_video_toolbox_ui():
initial_autosave_state = settings_instance.get("toolbox_autosave_enabled", True)
tb_processor.set_autosave_mode(initial_autosave_state)
with gr.Column() as tb_toolbox_ui_main_container:
with gr.Row():
with gr.Column(scale=1):
# Replace gr.State with a hidden gr.Number for robust state passing
tb_active_tab_index_storage = gr.Number(value=0, visible=False)
with gr.Tabs(elem_id="toolbox_input_tabs") as tb_input_tabs:
with gr.TabItem("Single Video Input", id=0):
tb_input_video_component = gr.Video(
label="Upload Video for processing",
autoplay=True,
elem_classes="video-size",
elem_id="toolbox-video-player"
)
with gr.TabItem("Batch Video Input", id=1):
tb_batch_input_files = gr.File(
label="Upload Multiple Videos for Batch Processing",
file_count="multiple",
type="filepath"
)
tb_start_pipeline_btn = gr.Button("π Start Pipeline Processing", variant="primary", size="sm", elem_id="toolbox-start-pipeline-btn")
with gr.Column(scale=1):
with gr.Tabs(elem_id="toolbox_output_tabs"):
with gr.TabItem("Video Output"):
tb_processed_video_output = gr.Video(
label="Processed Video",
autoplay=True,
interactive=False,
elem_classes="video-size"
)
with gr.Row():
tb_use_processed_as_input_btn = gr.Button("Use as Input", size="sm", scale=4)
tb_manual_save_btn = gr.Button("Manual Save", variant="secondary", size="sm", scale=4, visible=not initial_autosave_state)
with gr.Row():
with gr.Column(scale=1):
with gr.Accordion("Processing Pipeline", open=True):
gr.Markdown("Required for batch processing and recommended for single video. ", elem_classes="small-text-info")
with gr.Row(equal_height=False):
with gr.Group():
tb_pipeline_steps_chkbox = gr.CheckboxGroup(
label="Pipeline Steps:",
choices=["upscale", "frames", "filters", "loop", "export"],
value=[],
info="Select which pre-configured operations to run. Executed in order."
)
# --- Right Column: Workflow Presets ---
with gr.Column(scale=1):
with gr.Accordion("Workflow Presets", open=True):
gr.Markdown("Save/load all operation settings and active steps.", elem_classes="small-text-info")
with gr.Row():
workflow_choices = sorted([k for k in tb_workflow_presets_data.keys() if k != "None"])
workflow_choices.insert(0, "None")
with gr.Column(scale=1):
tb_workflow_preset_select = gr.Dropdown(
choices=workflow_choices, value="None", label="Load Workflow"
)
with gr.Column(scale=1):
tb_workflow_preset_name_input = gr.Textbox(
label="Preset Name (for saving)", placeholder="e.g., My Favorite Upscale"
)
with gr.Group():
with gr.Row():
tb_workflow_save_btn = gr.Button("πΎ Save/Update", size="sm", variant="primary")
tb_workflow_delete_btn = gr.Button("ποΈ Delete", size="sm", variant="stop")
tb_workflow_reset_btn = gr.Button("π Reset All to Defaults", size="sm")
with gr.Row():
with gr.Column():
with gr.Group():
tb_analyze_button = gr.Button("Click to Analyze Input Video", size="sm", variant="huggingface")
with gr.Accordion("Video Analysis Results", open=False) as tb_analysis_accordion:
tb_video_analysis_output = gr.Textbox(
container=False, lines=10, show_label=False,
interactive=False, elem_classes="analysis-box",
)
with gr.Column():
with gr.Group():
with gr.Row():
tb_monitor_toggle_checkbox = gr.Checkbox(label="Live System Monitoring", value=False)
tb_autosave_checkbox = gr.Checkbox(label="Autosave", value=initial_autosave_state)
tb_resource_monitor_output = gr.Textbox(
show_label=False, container=False, max_lines=8,
interactive=False, visible=False,
)
with gr.Row():
tb_delete_studio_transformer_btn = gr.Button("Click to Unload Studio Model", size="sm", scale=3, variant="stop")
with gr.Accordion("Operations", open=True):
with gr.Tabs():
with gr.TabItem("π Upscale Video (ESRGAN)"):
with gr.Row():
gr.Markdown("Upscale video resolution using Real-ESRGAN.")
with gr.Row():
with gr.Column(scale=2):
tb_upscale_model_select = gr.Dropdown(
choices=list(tb_processor.esrgan_upscaler.supported_models.keys()),
value=list(tb_processor.esrgan_upscaler.supported_models.keys())[0] if tb_processor.esrgan_upscaler.supported_models else None,
label="ESRGAN Model",
info="Select the Real-ESRGAN model."
)
default_model_key_init = list(tb_processor.esrgan_upscaler.supported_models.keys())[0] if tb_processor.esrgan_upscaler.supported_models else None
initial_model_info_gr_val, initial_slider_gr_val, initial_denoise_gr_val = tb_get_model_info_and_update_scale_slider(default_model_key_init)
tb_selected_model_scale_display = gr.Textbox(
label="Selected Model Info",
value=initial_model_info_gr_val.get('value', "Info: Select a model."),
interactive=False,
lines=2
)
tb_upscale_factor_slider = gr.Slider(
minimum=initial_slider_gr_val.get('minimum', 1.0),
maximum=initial_slider_gr_val.get('maximum', 2.0),
step=initial_slider_gr_val.get('step', 0.05),
value=initial_slider_gr_val.get('value', 2.0),
label=initial_slider_gr_val.get('label', "Target Upscale Factor"),
info="Desired output scale (e.g., 2.0 for 2x). Video is upscaled by the model, then resized if this differs from native scale."
)
with gr.Column(scale=2):
tb_upscale_tile_size_radio = gr.Radio(
choices=[("None (Recommended)", 0), ("512px", 512), ("256px", 256)],
value=0, label="Tile Size for Upscaling",
info="Splits video frames into tiles for processing. 'None' disables tiling. Smaller values (e.g., 512, 256) use less VRAM but are slower and can potentially show seams on some videos. Use if 'None' causes Out-Of-Memory."
)
with gr.Row():
tb_upscale_enhance_face_checkbox = gr.Checkbox(
label="Enhance Faces (GFPGAN)", value=False,
info="Uses GFPGAN to restore (human-like) faces. Increases processing time."
)
with gr.Row():
tb_upscale_use_streaming_checkbox = gr.Checkbox(
label="Use Streaming (Low Memory Mode)", value=False,
info="Enable for stable, low-memory processing of long or high-res videos. This avoids loading the entire clip into RAM, making it ideal for 4K footage or very large files."
)
with gr.Row():
tb_denoise_strength_slider = gr.Slider(
label="Denoise Strength (for RealESR-general-x4v3)",
minimum=0.0, maximum=1.0, step=0.01,
value=initial_denoise_gr_val.get('value', 0.5),
info="Adjusts denoising for RealESR-general-x4v3. 0.0=Max WDN, <1.0=Blend, 1.0=No WDN.",
visible=initial_denoise_gr_val.get('visible', False),
interactive=True
)
with gr.Row():
tb_upscale_video_btn = gr.Button("π Upscale Video", variant="primary")
with gr.TabItem("ποΈ Frame Adjust (Speed & Interpolation)"):
with gr.Row():
gr.Markdown("Adjust video speed and interpolate frames using RIFE AI.")
with gr.Row():
tb_process_fps_mode = gr.Radio(
choices=["No Interpolation", "2x Frames", "4x Frames"], value="No Interpolation", label="RIFE Frame Interpolation",
info="Select '2x' or '4x' RIFE Interpolation to double or quadruple the frame rate, creating smoother motion. 4x is more intensive and runs the 2x process twice."
)
tb_frames_use_streaming_checkbox = gr.Checkbox(
label="Use Streaming (Low Memory Mode)", value=False,
info="Enable for stable, low-memory RIFE on long videos. This avoids loading all frames into RAM. Note: 'Adjust Video Speed' is ignored in this mode."
)
with gr.Row():
tb_process_speed_factor = gr.Slider(
minimum=0.25, maximum=4.0, step=0.05, value=1.0, label="Adjust Video Speed Factor",
info="Values < 1.0 slow down the video, values > 1.0 speed it up. Affects video and audio."
)
tb_process_frames_btn = gr.Button("π Process Frames", variant="primary")
with gr.TabItem("π¨ Video Filters (FFmpeg)"):
with gr.Row():
gr.Markdown("Apply visual enhancements using FFmpeg filters.")
with gr.Row():
tb_filter_brightness = gr.Slider(-100, 100, value=TB_DEFAULT_FILTER_SETTINGS["brightness"], step=1, label="Brightness (%)", info="Adjusts overall image brightness.")
tb_filter_contrast = gr.Slider(0, 3, value=TB_DEFAULT_FILTER_SETTINGS["contrast"], step=0.05, label="Contrast (Linear)", info="Increases/decreases difference between light/dark areas.")
with gr.Row():
tb_filter_saturation = gr.Slider(0, 3, value=TB_DEFAULT_FILTER_SETTINGS["saturation"], step=0.05, label="Saturation", info="Adjusts color intensity. 0=grayscale, 1=original.")
tb_filter_temperature = gr.Slider(-100, 100, value=TB_DEFAULT_FILTER_SETTINGS["temperature"], step=1, label="Color Temperature Adjust", info="Shifts colors towards orange (warm) or blue (cool).")
with gr.Row():
tb_filter_sharpen = gr.Slider(0, 5, value=TB_DEFAULT_FILTER_SETTINGS["sharpen"], step=0.1, label="Sharpen Strength", info="Enhances edge details. Use sparingly.")
tb_filter_blur = gr.Slider(0, 5, value=TB_DEFAULT_FILTER_SETTINGS["blur"], step=0.1, label="Blur Strength", info="Softens the image.")
with gr.Row():
tb_filter_denoise = gr.Slider(0, 10, value=TB_DEFAULT_FILTER_SETTINGS["denoise"], step=0.1, label="Denoise Strength", info="Reduces video noise/grain.")
tb_filter_vignette = gr.Slider(0, 100, value=TB_DEFAULT_FILTER_SETTINGS["vignette"], step=1, label="Vignette Strength (%)", info="Darkens corners, drawing focus to center.")
with gr.Row():
tb_filter_s_curve_contrast = gr.Slider(0, 100, value=TB_DEFAULT_FILTER_SETTINGS["s_curve_contrast"], step=1, label="S-Curve Contrast", info="Non-linear contrast, boosting highlights/shadows subtly.")
tb_filter_film_grain_strength = gr.Slider(0, 50, value=TB_DEFAULT_FILTER_SETTINGS["film_grain_strength"], step=1, label="Film Grain Strength", info="Adds artificial film grain.")
tb_apply_filters_btn = gr.Button("β¨ Apply Filters to Video", variant="primary")
with gr.Row(equal_height=False):
with gr.Column(scale=2):
with gr.Row():
preset_choices = list(tb_filter_presets_data.keys()) if tb_filter_presets_data else ["none"]
if "none" not in preset_choices and preset_choices:
preset_choices.insert(0,"none")
elif not preset_choices:
preset_choices = ["none"]
tb_filter_preset_select = gr.Dropdown(choices=preset_choices, value="none", label="Load Preset", scale=2)
tb_new_preset_name_input = gr.Textbox(label="Preset Name (for saving/editing)", placeholder="Select preset or type new name...", scale=2)
with gr.Column(scale=1):
with gr.Row():
tb_save_preset_btn = gr.Button("πΎ Save/Update", variant="primary", scale=1)
tb_delete_preset_btn = gr.Button("ποΈ Delete", variant="stop", scale=1)
with gr.Row():
tb_reset_filters_btn = gr.Button("π Reset All Sliders to 'None' Preset")
with gr.TabItem("π Video Loop"):
with gr.Row():
gr.Markdown("Create looped or ping-pong versions of the video.")
tb_loop_type_select = gr.Radio(choices=["loop", "ping-pong"], value="loop", label="Loop Type")
tb_num_loops_slider = gr.Slider(
minimum=1, maximum=10, step=1, value=1, label="Number of Loops/Repeats",
info="The video will play its original content, then repeat this many additional times. E.g., 1 loop = 2 total plays of the segment."
)
tb_create_loop_btn = gr.Button("π Create Loop", variant="primary")
with gr.TabItem("πΌοΈ Frames Studio"):
with gr.Column():
gr.Markdown("### 1. Extract Frames from Video")
gr.Markdown(
"β οΈ **Warning:** Extracting frames from high-resolution (e.g., 4K+) or long videos can consume a significant amount of disk space (many gigabytes) and may cause the Frames Studio gallery to load slowly. Proceed with caution."
)
gr.Markdown("Extract frames from the **uploaded video (top-left)** as images. These folders can then be loaded into the Frames Studio below.")
with gr.Row():
tb_extract_rate_slider = gr.Number(
label="Extract Every Nth Frame", value=1, minimum=1, step=1,
info="1 = all frames. N = 1st, (N+1)th... (i.e., frame 0, frame N, frame 2N, etc.)",
scale=1
)
tb_extract_frames_btn = gr.Button("π¨ Extract Frames", variant="primary", scale=2)
gr.Markdown("---")
with gr.Column():
gr.Markdown("### 2. Frames Studio")
gr.Markdown("Load an extracted frames folder to view, delete, and manage individual frames before reassembling.")
with gr.Row():
tb_extracted_folders_dropdown = gr.Dropdown(
label="Select Extracted Folder to Load",
info="Select a folder from your 'extracted_frames' directory.",
scale=3
)
tb_refresh_extracted_folders_btn = gr.Button("π Refresh List", scale=1)
tb_clear_selected_folder_btn = gr.Button(
"ποΈ Delete ENTIRE Folder", variant="stop", interactive=False, scale=1
)
tb_load_frames_to_studio_btn = gr.Button("πΌοΈ Load Frames to Studio", variant="secondary")
# Redesigned Studio Area
with gr.Column(variant="panel"):
with gr.Column(elem_id="gallery-scroll-wrapper"):
tb_frames_gallery = gr.Gallery(
label="Extracted Frames", show_label=False, elem_id="toolbox_frames_gallery",
columns=8, # height is now controlled by the wrapper's CSS
object_fit="contain", preview=False
)
with gr.Row():
with gr.Column(scale=1, min_width=220):
tb_save_selected_frame_btn = gr.Button("πΎ Save Selected Frame", size="sm", interactive=False)
tb_delete_selected_frame_btn = gr.Button("ποΈ Delete Selected Frame", size="sm", variant="stop", interactive=False)
with gr.Column(scale=3):
# This row now contains the info box and the new clear button
with gr.Row():
tb_frame_info_box = gr.Textbox(
# label="Selected Frame Info",
interactive=False,
placeholder="Click a frame in the gallery above to select it.",
container=False,
lines=2,
scale=4
)
tb_clear_gallery_btn = gr.Button("π§Ή Clear Gallery", size="sm", scale=1)
gr.Markdown("---")
with gr.Column():
gr.Markdown("### 3. Reassemble Frames to Video")
gr.Markdown("After you are satisfied with the frames in the studio, reassemble them into a new video.")
with gr.Row():
tb_reassemble_output_fps = gr.Number(label="Output Video FPS", value=30, minimum=1, step=1)
tb_reassemble_video_name_input = gr.Textbox(label="Output Video Name (optional, .mp4 added)", placeholder="e.g., my_edited_video")
tb_reassemble_frames_btn = gr.Button("π§© Reassemble From Studio", variant="primary")
with gr.TabItem("π§© Join Videos (Concatenate)"):
with gr.Accordion("Select two or more videos to join them together into a single file", open=True):
gr.Markdown(
"""
* **Input:** The Input accepts multiple videos dragged in or ctrl+clicked via `Click to Upload`**.
* **Output:** The result will appear in the **'Processed Video' player (top-right)** for you to review.
* **Saving:** The output is saved to your 'saved_videos' folder if 'Autosave' is enabled. Otherwise, you must click the 'Manual Save' button.
"""
)
tb_join_videos_input = gr.File(
label="Upload Videos to Join",
file_count="multiple",
file_types=["video", "file"]
)
tb_join_video_name_input = gr.Textbox(
label="Output Video Name (optional, .mp4 and timestamp added)",
placeholder="e.g., my_awesome_compilation"
)
tb_join_videos_btn = gr.Button("π€ Join Videos", variant="primary")
with gr.TabItem("π¦ Export & Compress"):
with gr.Accordion("Compress your final video and/or convert it into a shareable format", open=True):
gr.Markdown(
"""
* **Input:** This operation always uses the video in the **'Upload Video' player (top-left)**.
* **Output:** The result will appear in the **'Processed Video' player (top-right)** for you to review.
* **Saving:** The output is saved to your 'saved_videos' folder if 'Autosave' is enabled. Otherwise, you must click the 'Manual Save' button. Note: GIFs will _always_ be saved!
* **Note:** WebM and GIF encoding can be slow for long or high-resolution videos. Please be patient!
"""
)
with gr.Row():
with gr.Column(scale=2):
tb_export_format_radio = gr.Radio(
["MP4", "WebM", "GIF"], value="MP4", label="Output Format",
info="MP4 is best for general use. WebM is great for web/Discord (smaller size). GIF is a widely-supported format for short, silent, looping clips. GIF output will always be saved."
)
tb_export_quality_slider = gr.Slider(
0, 100, value=85, step=1, label="Quality",
info="Higher quality means a larger file size. 80-90 is a good balance for MP4/WebM."
)
with gr.Column(scale=2):
tb_export_resize_slider = gr.Slider(
256, 2048, value=1024, step=64, label="Max Width (pixels)",
info="Resizes the video to this maximum width while maintaining aspect ratio. A powerful way to reduce file size."
)
tb_export_name_input = gr.Textbox(
label="Output Filename (optional)",
placeholder="e.g., my_final_video_for_discord"
)
tb_export_video_btn = gr.Button("π Export Video", variant="primary")
with gr.Accordion("π‘ Post-processing Guide & Tips", open=False):
with gr.Tabs():
with gr.TabItem("π Getting Started"):
gr.Markdown("""
### Welcome to the Toolbox!
**1. Input & Output**
* Most tools use the video in the **Upload Video player β¬
οΈ (top-left)** as their input.
* Your results will appear in the **Processed Video player β‘οΈ (top-right)**.
**2. Chaining Operations (Applying multiple effects)**
* To use a result as the input for your next step:
1. Run an operation (like Upscale).
2. When the result appears, click the **'Use as Input'** button.
3. Your result is now in the input player, ready for the next operation!
**3. Saving Your Work**
* **Autosave:** When the `Autosave` checkbox is on, all results are automatically saved to the `saved_videos` folder.
* **Manual Save:** If `Autosave` is off, results go to a temporary folder. Use the **'πΎ Manual Save'** button to save the video from the output player permanently.
**4. Analyze First!**
* It's a good idea to click the **'Analyze Video'** button after uploading. It gives you helpful info like resolution and frame rate.
""")
with gr.TabItem("βοΈ The Processing Pipeline"):
gr.Markdown("""
### Run Multiple Operations at Once
The pipeline lets you set up a series of operations and run them with a single click. This is the main way to process videos.
**How to Use the Pipeline:**
1. **Configure:** Go to the operation tabs (π Upscale, π¨ Filters, etc.) and set the sliders and options exactly how you want them.
2. **Select:** In the **'Processing Pipeline'** section, check the boxes for the steps you want to run.
3. **Input:** Make sure your video is in the 'Single Video' tab, or your files are in the 'Batch Video' tab.
4. **Execute:** Click the **'π Start Pipeline Processing'** button.
**Execution Order:**
The pipeline always runs in this fixed order, no matter when you check the boxes:
`Upscale` β‘οΈ `Frame Adjust` β‘οΈ `Filters` β‘οΈ `Loop` β‘οΈ `Export`
**Single vs. Batch Video:**
* **Single Video:** Processes one video. The final result will appear in the output player.
* **Batch Video:** Processes multiple videos. Each video will go through the entire pipeline. Outputs are saved directly to a new, timestamped folder inside `saved_videos`. The output player will only show the very last video processed.
**Workflow Presets:**
* Use presets to **save and load your entire pipeline setup**, including all slider values and selected steps.
""")
with gr.TabItem("πΌοΈ Frames Studio Workflow"):
gr.Markdown("""
### Edit Your Video Frame-by-Frame
The Frames Studio lets you break a video into images, edit them, and put them back together.
**Step 1: Extract Frames**
* Upload a video and use the **'π¨ Extract Frames'** button.
* This creates a new folder of images in `postprocessed_output/frames/extracted_frames/`.
* β οΈ **Warning:** Extracting from long or high-res videos can use a lot of disk space!
**Step 2: Edit in the Studio**
* Click **'π Refresh List'** to find your new folder, then click **'πΌοΈ Load Frames to Studio'**.
* The frames will appear in the gallery. Click a frame to select it.
* **Delete Frames:** Use the **'ποΈ Delete Selected Frame'** button to remove bad frames or glitches.
* **Save Frames:** Use the **'πΎ Save Selected Frame'** button to save a high-quality copy of a single frame. Perfect for use as an image prompt!
**Step 3: Reassemble Video**
* Once you're done editing, use the **'π§© Reassemble From Studio'** button.
* This creates a new video using only the frames that are left in the folder.
""")
with gr.TabItem("βοΈ Other Tools & Tips"):
gr.Markdown("""
### Individual Operations
* **π§© Join Videos:** Combine multiple video clips into a single video file. The tool will automatically handle different resolutions and audio.
* **π¦ Export & Compress:** A powerful tool to make your final video smaller. You can lower the quality, resize the video, or convert it to `MP4`, `WebM`, or a silent `GIF`.
### Memory Management
* The **'π€ Unload Studio Model'** button can free up VRAM by removing the main video generation model from memory.
* This is useful before running a heavy task here, like a 4K video upscale. The main app will reload the model automatically when you need it again.
### Streaming Mode for Upscale & RIFE
* On the **'Upscale'** and **'Frame Adjust'** tabs, you'll find a checkbox: **"Use Streaming (Low Memory Mode)"**.
**What It Does for You:**
Normally, your entire video is loaded into RAM to process it as fast as possible. For very long or high-resolution videos (like 4K), this can potentially cause it to exceed your RAM and spill over to disk (pagefile) or possibly even cause a system crash!
Streaming Mode processes your video one frame at a time to keep memory usage low and stable.
* **Check this box if you are working with a large video file.**
**How it Works:**
* **Default Mode:** Loads the entire video into RAM. It's the fastest option but uses the most memory.
* **Streaming Mode (Upscaling & 2x RIFE):** A "true" stream that reads and writes one frame at a time. Memory usage is very low and constant.
* **Streaming Mode (4x RIFE):** A "hybrid" mode. **Be aware: the first 2x pass will still use a large amount of RAM to build the intermediate video (similar to the Default Mode).** However, its key benefit is that the second 2x pass becomes completely stable, preventing the final, largest memory spike that often causes crashes in the default mode.
* **Note:** The **Adjust Video Speed Factor** is ignored when Streaming mode is activated. In Low Memory Mode, this must be done as a separate operation.
**β Tip for Maximum Memory Savings on 4x RIFE:**
For the absolute lowest memory usage on a 4x interpolation, you can run the **2x Streaming** operation twice back-to-back.
1. Run a **2x RIFE** with **Streaming Mode enabled**.
2. Click **"Use as Input"** to move the result back to the input player.
3. Run a **2x RIFE** on that new video, again with **Streaming Mode enabled**.
This manual two-pass method ensures memory usage never exceeds the "true" streaming level, at the cost of being slower due to writing an intermediate file to disk.
### π Check Console Messages!
* The text box at the very bottom of the page shows important status updates, warnings, and error messages. If something isn't working, the answer is probably there!
""")
with gr.Row():
tb_message_output = gr.Textbox(label="Console Messages", lines=10, interactive=False, elem_classes="message-box", value=tb_update_messages)
with gr.Row():
tb_open_folder_button = gr.Button("π Open Output Folder", scale=4)
tb_clear_temp_button = gr.Button("ποΈ Clear Temporary Files", variant="stop", scale=1)
# --- Event Handlers ---
_ORDERED_FILTER_SLIDERS_ = [
tb_filter_brightness, tb_filter_contrast, tb_filter_saturation, tb_filter_temperature,
tb_filter_sharpen, tb_filter_blur, tb_filter_denoise, tb_filter_vignette,
tb_filter_s_curve_contrast, tb_filter_film_grain_strength
]
# A list of all operation parameter components in the correct order for workflow presets
_ALL_PIPELINE_PARAMS_COMPONENTS_ = [
# Upscale
tb_upscale_model_select, tb_upscale_factor_slider, tb_upscale_tile_size_radio,
tb_upscale_enhance_face_checkbox, tb_denoise_strength_slider,
tb_upscale_use_streaming_checkbox, # <-- ADDED UPSCALE STREAMING CHECKBOX
# Frame Adjust
tb_process_fps_mode, tb_process_speed_factor,
tb_frames_use_streaming_checkbox, # <-- ADDED FRAME ADJUST STREAMING CHECKBOX
# Loop
tb_loop_type_select, tb_num_loops_slider,
# Filters
*_ORDERED_FILTER_SLIDERS_,
# Export
tb_export_format_radio, tb_export_quality_slider, tb_export_resize_slider
]
# The list of all inputs for the main pipeline execution
_ALL_PIPELINE_INPUTS_ = [
tb_active_tab_index_storage,
tb_pipeline_steps_chkbox,
# Inputs
tb_input_video_component, tb_batch_input_files,
# Parameters
*_ALL_PIPELINE_PARAMS_COMPONENTS_
]
# --- NEW: Workflow Preset Event Handlers ---
tb_workflow_save_btn.click(
fn=tb_handle_save_workflow_preset,
inputs=[tb_workflow_preset_name_input, tb_pipeline_steps_chkbox, *_ALL_PIPELINE_PARAMS_COMPONENTS_],
outputs=[tb_workflow_preset_select, tb_workflow_preset_name_input, tb_message_output]
)
# The list of outputs for loading must include the name box, then ALL controls in the correct order
_WORKFLOW_LOAD_OUTPUTS_ = [
tb_workflow_preset_name_input, # First output is the name box
tb_pipeline_steps_chkbox, # Second is the checkbox group
*_ALL_PIPELINE_PARAMS_COMPONENTS_, # Then all the parameter controls
tb_message_output # Finally, the message box
]
tb_workflow_preset_select.change(
fn=tb_handle_load_workflow_preset,
inputs=[tb_workflow_preset_select],
outputs=_WORKFLOW_LOAD_OUTPUTS_
)
tb_workflow_delete_btn.click(
fn=tb_handle_delete_workflow_preset,
inputs=[tb_workflow_preset_name_input],
# This list now also needs the dropdown prepended
outputs=[tb_workflow_preset_select, *_WORKFLOW_LOAD_OUTPUTS_]
)
tb_workflow_reset_btn.click(
fn=tb_handle_reset_workflow_to_defaults,
inputs=None,
# The outputs list now starts with the dropdown, followed by the standard load outputs
outputs=[tb_workflow_preset_select, *_WORKFLOW_LOAD_OUTPUTS_]
)
# --- End Workflow Preset Handlers ---
tb_start_pipeline_btn.click(
fn=tb_handle_start_pipeline,
inputs=_ALL_PIPELINE_INPUTS_,
outputs=[tb_processed_video_output, tb_message_output]
)
# Listen for tab changes and update the state component
tb_input_tabs.select(
fn=tb_update_active_tab_index,
inputs=None, # evt is passed implicitly
outputs=[tb_active_tab_index_storage] # Only update the state, not the message box
)
# --- SINGLE VIDEO HANDLERS ---
tb_input_video_component.upload(fn=lambda: (tb_message_mgr.clear() or tb_update_messages(), None), outputs=[tb_message_output, tb_video_analysis_output])
tb_input_video_component.clear(fn=lambda: (tb_message_mgr.clear() or tb_update_messages(), None, None), outputs=[tb_message_output, tb_video_analysis_output, tb_processed_video_output])
tb_analyze_button.click(
fn=tb_handle_analyze_video,
inputs=[tb_input_video_component],
outputs=[tb_message_output, tb_video_analysis_output, tb_analysis_accordion]
)
tb_process_frames_btn.click(
fn=tb_handle_process_frames,
inputs=[tb_input_video_component, tb_process_fps_mode, tb_process_speed_factor, tb_frames_use_streaming_checkbox], # <-- ADDED HERE
outputs=[tb_processed_video_output, tb_message_output]
)
tb_create_loop_btn.click(fn=tb_handle_create_loop, inputs=[tb_input_video_component, tb_loop_type_select, tb_num_loops_slider], outputs=[tb_processed_video_output, tb_message_output])
tb_filter_preset_select.change(
fn=lambda preset_name_from_dropdown: (preset_name_from_dropdown, *tb_update_filter_sliders_from_preset(preset_name_from_dropdown)),
inputs=[tb_filter_preset_select], outputs=[tb_new_preset_name_input] + _ORDERED_FILTER_SLIDERS_
)
tb_apply_filters_btn.click(fn=tb_handle_apply_filters, inputs=[tb_input_video_component] + _ORDERED_FILTER_SLIDERS_, outputs=[tb_processed_video_output, tb_message_output])
tb_save_preset_btn.click(fn=tb_handle_save_user_preset, inputs=[tb_new_preset_name_input] + _ORDERED_FILTER_SLIDERS_, outputs=[tb_filter_preset_select, tb_message_output, tb_new_preset_name_input])
tb_delete_preset_btn.click(fn=tb_handle_delete_user_preset, inputs=[tb_new_preset_name_input], outputs=[tb_filter_preset_select, tb_message_output, tb_new_preset_name_input] + _ORDERED_FILTER_SLIDERS_)
tb_reset_filters_btn.click(fn=tb_handle_reset_all_filters, inputs=None, outputs=[tb_filter_preset_select, tb_new_preset_name_input, *_ORDERED_FILTER_SLIDERS_, tb_message_output])
tb_use_processed_as_input_btn.click(
fn=tb_handle_use_processed_as_input,
inputs=[tb_processed_video_output],
outputs=[tb_input_video_component, tb_message_output, tb_video_analysis_output]
)
tb_upscale_video_btn.click(
fn=tb_handle_upscale_video,
inputs=[tb_input_video_component, tb_upscale_model_select, tb_upscale_factor_slider, tb_upscale_tile_size_radio, tb_upscale_enhance_face_checkbox, tb_denoise_strength_slider, tb_upscale_use_streaming_checkbox],
outputs=[tb_processed_video_output, tb_message_output]
)
tb_upscale_model_select.change(
fn=tb_get_model_info_and_update_scale_slider, inputs=[tb_upscale_model_select],
outputs=[tb_selected_model_scale_display, tb_upscale_factor_slider, tb_denoise_strength_slider]
)
# --- Frames Studio Event Handlers ---
tb_extract_frames_btn.click(
fn=tb_handle_extract_frames, inputs=[tb_input_video_component, tb_extract_rate_slider], outputs=[tb_message_output]
).then(
fn=tb_handle_refresh_extracted_folders, inputs=None,
outputs=[tb_extracted_folders_dropdown, tb_message_output, tb_clear_selected_folder_btn, tb_frames_gallery, tb_frame_info_box]
)
tb_refresh_extracted_folders_btn.click(
fn=tb_handle_refresh_extracted_folders, inputs=None,
outputs=[tb_extracted_folders_dropdown, tb_message_output, tb_clear_selected_folder_btn, tb_frames_gallery, tb_frame_info_box]
)
tb_extracted_folders_dropdown.change(
fn=lambda selection: gr.update(interactive=bool(selection)),
inputs=[tb_extracted_folders_dropdown], outputs=[tb_clear_selected_folder_btn]
)
tb_clear_selected_folder_btn.click(
fn=tb_handle_clear_selected_folder,
inputs=[tb_extracted_folders_dropdown],
outputs=[
tb_message_output,
tb_extracted_folders_dropdown,
tb_frames_gallery,
tb_frame_info_box,
tb_save_selected_frame_btn,
tb_delete_selected_frame_btn
]
).then(
fn=lambda selection: gr.update(interactive=bool(selection)),
inputs=[tb_extracted_folders_dropdown],
outputs=[tb_clear_selected_folder_btn]
)
tb_load_frames_to_studio_btn.click(
fn=tb_handle_load_frames_to_studio,
inputs=[tb_extracted_folders_dropdown],
outputs=[tb_message_output, tb_frames_gallery, tb_frame_info_box]
)
tb_frames_gallery.select(
fn=tb_handle_frame_select,
inputs=None, # evt_data is passed implicitly
outputs=[tb_frame_info_box, tb_save_selected_frame_btn, tb_delete_selected_frame_btn]
)
tb_delete_selected_frame_btn.click(
fn=tb_handle_delete_and_refresh_gallery,
inputs=[tb_extracted_folders_dropdown, tb_frame_info_box],
outputs=[
tb_frames_gallery,
tb_frame_info_box,
tb_save_selected_frame_btn,
tb_delete_selected_frame_btn,
tb_message_output
]
)
tb_save_selected_frame_btn.click(
fn=tb_handle_save_selected_frame,
inputs=[tb_extracted_folders_dropdown, tb_frame_info_box],
outputs=[tb_message_output, tb_frame_info_box]
)
tb_clear_gallery_btn.click(
fn=lambda: (None, "Click a frame in the gallery above to select it.", gr.update(interactive=False), gr.update(interactive=False)),
inputs=None,
outputs=[
tb_frames_gallery,
tb_frame_info_box,
tb_save_selected_frame_btn,
tb_delete_selected_frame_btn
]
)
tb_reassemble_frames_btn.click(
fn=tb_handle_reassemble_frames,
inputs=[tb_extracted_folders_dropdown, tb_reassemble_output_fps, tb_reassemble_video_name_input],
outputs=[tb_processed_video_output, tb_message_output]
)
tb_join_videos_btn.click(
fn=tb_handle_join_videos,
# Add the new textbox to the inputs list
inputs=[tb_join_videos_input, tb_join_video_name_input],
outputs=[tb_processed_video_output, tb_message_output]
)
tb_export_video_btn.click(
fn=tb_handle_export_video,
inputs=[
tb_input_video_component, # The video to process
tb_export_format_radio,
tb_export_quality_slider,
tb_export_resize_slider,
tb_export_name_input
],
# The outputs now include the video player.
outputs=[tb_processed_video_output, tb_message_output]
)
# --- Other System Handlers ---
tb_open_folder_button.click(fn=lambda: tb_processor.tb_open_output_folder() or tb_update_messages(), outputs=[tb_message_output])
tb_monitor_toggle_checkbox.change(fn=lambda is_enabled: gr.update(visible=is_enabled), inputs=[tb_monitor_toggle_checkbox], outputs=[tb_resource_monitor_output])
tb_monitor_timer = gr.Timer(2, active=True)
tb_monitor_timer.tick(fn=tb_handle_update_monitor, inputs=[tb_monitor_toggle_checkbox], outputs=[tb_resource_monitor_output])
tb_delete_studio_transformer_btn.click(fn=tb_handle_delete_studio_transformer, inputs=[], outputs=[tb_message_output])
tb_manual_save_btn.click(fn=tb_handle_manually_save_video, inputs=[tb_processed_video_output], outputs=[tb_processed_video_output, tb_message_output])
def tb_handle_autosave_toggle(autosave_is_on_ui_value):
settings_instance.set("toolbox_autosave_enabled", autosave_is_on_ui_value)
tb_processor.set_autosave_mode(autosave_is_on_ui_value)
return {
tb_manual_save_btn: gr.update(visible=not autosave_is_on_ui_value),
tb_message_output: gr.update(value=tb_update_messages())
}
tb_autosave_checkbox.change(fn=tb_handle_autosave_toggle, inputs=[tb_autosave_checkbox], outputs=[tb_manual_save_btn, tb_message_output])
tb_clear_temp_button.click(fn=tb_handle_clear_temp_files, inputs=None, outputs=[tb_processed_video_output, tb_message_output])
return tb_toolbox_ui_main_container, tb_input_video_component
# --- Main execution block for standalone mode ---
if __name__ == "__main__":
import argparse
def launch_standalone():
"""Creates and launches the Gradio interface for the toolbox when run as a script."""
# 1. Setup and parse command-line arguments, similar to studio.py
parser = argparse.ArgumentParser(description="Run FramePack Toolbox in Standalone Mode")
parser.add_argument('--share', action='store_true', help="Enable Gradio sharing link")
parser.add_argument("--server", type=str, default='127.0.0.1', help="Server name to launch on (default: 127.0.0.1)")
parser.add_argument("--port", type=int, required=False, help="Server port to launch on (default: 7860)")
parser.add_argument("--inbrowser", action='store_true', help="Automatically open in browser")
args = parser.parse_args()
# 2. Define custom CSS
css = """
/* hide the gr.Video source selection bar for tb_input_video_component */
#toolbox-video-player .source-selection {
display: none !important;
}
/* control sizing for gr.Video components */
.video-size video {
max-height: 60vh;
min-height: 300px !important;
object-fit: contain;
}
/* NEW: Closes the gap between input tabs and the pipeline accordion below them */
#pipeline-controls-wrapper {
margin-top: -15px !important; /* Adjust this value to get the perfect "snug" fit */
}
/* --- NEW CSS RULE FOR GALLERY SCROLLING --- */
#gallery-scroll-wrapper {
max-height: 600px; /* Set your desired fixed height */
overflow-y: auto; /* Add a scrollbar only when needed */
}
/* --- --- */
#toolbox-start-pipeline-btn {
margin-top: -14px !important; /* Adjust this value to get the perfect alignment */
}
.small-text-info {
font-size: 0.6rem !important; /* Start with a more reasonable size */
}
"""
# 3. Get the output directory path from the existing settings instance
output_dir_from_settings = settings_instance.get("output_dir")
allowed_paths = [output_dir_from_settings]
print(f"Gradio server will be allowed to access path: {output_dir_from_settings}")
# 4. Create the Gradio interface
with gr.Blocks(title="FramePack Toolbox (Standalone)", css=css) as block:
gr.Markdown("# FramePack Post-processing Toolbox (Standalone Mode)")
gr.Markdown(
"This is the standalone version of the toolbox. "
"Upload a video to the 'Upload Video' component to begin. "
"The 'Unload Studio Model' button will have no effect in this mode."
)
tb_create_video_toolbox_ui()
print(f"Launching Toolbox server. Access it at http://{args.server}:{args.port if args.port else 7860}")
block.launch(
server_name=args.server,
# 5. Launch the Gradio app with all the configured arguments
server_port=args.port,
share=args.share,
inbrowser=args.inbrowser,
allowed_paths=allowed_paths
)
# Call the launch function
launch_standalone() |