Spaces:
Build error
Build error
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
# | |
# Modified from diffusers==0.29.2 | |
# | |
# ============================================================================== | |
import inspect | |
from typing import Any, Callable, Dict, List, Optional, Union, Tuple | |
import numpy as np | |
import torch | |
from packaging import version | |
from diffusers.utils import BaseOutput | |
from dataclasses import dataclass | |
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
from diffusers.configuration_utils import FrozenDict | |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin | |
from diffusers.models import AutoencoderKL, ImageProjection | |
from diffusers.models.lora import adjust_lora_scale_text_encoder | |
from diffusers.schedulers import KarrasDiffusionSchedulers | |
from diffusers.utils import ( | |
USE_PEFT_BACKEND, | |
deprecate, | |
logging, | |
replace_example_docstring, | |
scale_lora_layers, | |
unscale_lora_layers, | |
) | |
from diffusers.utils.torch_utils import randn_tensor | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
from hymm_sp.constants import PRECISION_TO_TYPE | |
from hymm_sp.vae.autoencoder_kl_causal_3d import AutoencoderKLCausal3D | |
from hymm_sp.text_encoder import TextEncoder | |
from einops import rearrange | |
from ...modules import HYVideoDiffusionTransformer | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """""" | |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
""" | |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | |
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | |
""" | |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
# rescale the results from guidance (fixes overexposure) | |
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | |
return noise_cfg | |
def retrieve_timesteps( | |
scheduler, | |
num_inference_steps: Optional[int] = None, | |
device: Optional[Union[str, torch.device]] = None, | |
timesteps: Optional[List[int]] = None, | |
sigmas: Optional[List[float]] = None, | |
**kwargs, | |
): | |
""" | |
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
Args: | |
scheduler (`SchedulerMixin`): | |
The scheduler to get timesteps from. | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
must be `None`. | |
device (`str` or `torch.device`, *optional*): | |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
`num_inference_steps` and `sigmas` must be `None`. | |
sigmas (`List[float]`, *optional*): | |
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
`num_inference_steps` and `timesteps` must be `None`. | |
Returns: | |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
second element is the number of inference steps. | |
""" | |
if timesteps is not None and sigmas is not None: | |
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
if timesteps is not None: | |
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accepts_timesteps: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" timestep schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
elif sigmas is not None: | |
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accept_sigmas: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" sigmas schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
else: | |
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
return timesteps, num_inference_steps | |
class HunyuanVideoPipelineOutput(BaseOutput): | |
videos: Union[torch.Tensor, np.ndarray] | |
class HunyuanVideoAudioPipeline(DiffusionPipeline): | |
r""" | |
Pipeline for text-to-video generation using HunyuanVideo. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. | |
text_encoder ([`TextEncoder`]): | |
Frozen text-encoder. | |
text_encoder_2 ([`TextEncoder`]): | |
Frozen text-encoder_2. | |
transformer ([`HYVideoDiffusionTransformer`]): | |
A `HYVideoDiffusionTransformer` to denoise the encoded video latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. | |
""" | |
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" | |
_optional_components = ["text_encoder_2"] | |
_exclude_from_cpu_offload = ["transformer"] | |
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: TextEncoder, | |
transformer: HYVideoDiffusionTransformer, | |
scheduler: KarrasDiffusionSchedulers, | |
text_encoder_2: Optional[TextEncoder] = None, | |
progress_bar_config: Dict[str, Any] = None, | |
args=None, | |
): | |
super().__init__() | |
# ========================================================================================== | |
if progress_bar_config is None: | |
progress_bar_config = {} | |
if not hasattr(self, '_progress_bar_config'): | |
self._progress_bar_config = {} | |
self._progress_bar_config.update(progress_bar_config) | |
self.args = args | |
# ========================================================================================== | |
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: | |
deprecation_message = ( | |
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" | |
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " | |
"to update the config accordingly as leaving `steps_offset` might led to incorrect results" | |
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," | |
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" | |
" file" | |
) | |
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) | |
new_config = dict(scheduler.config) | |
new_config["steps_offset"] = 1 | |
scheduler._internal_dict = FrozenDict(new_config) | |
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: | |
deprecation_message = ( | |
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." | |
" `clip_sample` should be set to False in the configuration file. Please make sure to update the" | |
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" | |
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" | |
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" | |
) | |
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) | |
new_config = dict(scheduler.config) | |
new_config["clip_sample"] = False | |
scheduler._internal_dict = FrozenDict(new_config) | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
transformer=transformer, | |
scheduler=scheduler, | |
text_encoder_2=text_encoder_2 | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
def encode_prompt( | |
self, | |
prompt, | |
name, | |
device, | |
num_videos_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
pixel_value_llava: Optional[torch.Tensor] = None, | |
uncond_pixel_value_llava: Optional[torch.Tensor] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
negative_attention_mask: Optional[torch.Tensor] = None, | |
lora_scale: Optional[float] = None, | |
clip_skip: Optional[int] = None, | |
text_encoder: Optional[TextEncoder] = None, | |
data_type: Optional[str] = "image", | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_videos_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
pixel_value_llava (`torch.Tensor`, *optional*): | |
The image tensor for llava. | |
uncond_pixel_value_llava (`torch.Tensor`, *optional*): | |
The image tensor for llava. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
attention_mask (`torch.Tensor`, *optional*): | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
negative_attention_mask (`torch.Tensor`, *optional*): | |
lora_scale (`float`, *optional*): | |
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
text_encoder (TextEncoder, *optional*): | |
""" | |
if text_encoder is None: | |
text_encoder = self.text_encoder | |
# set lora scale so that monkey patched LoRA | |
# function of text encoder can correctly access it | |
if lora_scale is not None and isinstance(self, LoraLoaderMixin): | |
self._lora_scale = lora_scale | |
# dynamically adjust the LoRA scale | |
if not USE_PEFT_BACKEND: | |
adjust_lora_scale_text_encoder(text_encoder.model, lora_scale) | |
else: | |
scale_lora_layers(text_encoder.model, lora_scale) | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if prompt_embeds is None: | |
# textual inversion: process multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, text_encoder.tokenizer) | |
text_inputs = text_encoder.text2tokens(prompt, data_type=data_type, name=name) | |
if pixel_value_llava is not None: | |
text_inputs['pixel_value_llava'] = pixel_value_llava | |
text_inputs['attention_mask'] = torch.cat([text_inputs['attention_mask'], torch.ones((1, 575 * len(pixel_value_llava))).to(text_inputs['attention_mask'])], dim=1) | |
if clip_skip is None: | |
prompt_outputs = text_encoder.encode(text_inputs, data_type=data_type) | |
prompt_embeds = prompt_outputs.hidden_state | |
else: | |
prompt_outputs = text_encoder.encode(text_inputs, output_hidden_states=True, data_type=data_type) | |
# Access the `hidden_states` first, that contains a tuple of | |
# all the hidden states from the encoder layers. Then index into | |
# the tuple to access the hidden states from the desired layer. | |
prompt_embeds = prompt_outputs.hidden_states_list[-(clip_skip + 1)] | |
# We also need to apply the final LayerNorm here to not mess with the | |
# representations. The `last_hidden_states` that we typically use for | |
# obtaining the final prompt representations passes through the LayerNorm | |
# layer. | |
prompt_embeds = text_encoder.model.text_model.final_layer_norm(prompt_embeds) | |
attention_mask = prompt_outputs.attention_mask | |
if attention_mask is not None: | |
attention_mask = attention_mask.to(device) | |
bs_embed, seq_len = attention_mask.shape | |
attention_mask = attention_mask.repeat(1, num_videos_per_prompt) | |
attention_mask = attention_mask.view(bs_embed * num_videos_per_prompt, seq_len) | |
if text_encoder is not None: | |
prompt_embeds_dtype = text_encoder.dtype | |
elif self.transformer is not None: | |
prompt_embeds_dtype = self.transformer.dtype | |
else: | |
prompt_embeds_dtype = prompt_embeds.dtype | |
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
if prompt_embeds.ndim == 2: | |
bs_embed, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, -1) | |
else: | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
# textual inversion: process multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, text_encoder.tokenizer) | |
uncond_input = text_encoder.text2tokens(uncond_tokens, data_type=data_type) | |
if uncond_pixel_value_llava is not None: | |
uncond_input['pixel_value_llava'] = uncond_pixel_value_llava | |
uncond_input['attention_mask'] = torch.cat([uncond_input['attention_mask'], torch.ones((1, 575 * len(uncond_pixel_value_llava))).to(uncond_input['attention_mask'])], dim=1) | |
negative_prompt_outputs = text_encoder.encode(uncond_input, data_type=data_type) | |
negative_prompt_embeds = negative_prompt_outputs.hidden_state | |
negative_attention_mask = negative_prompt_outputs.attention_mask | |
if negative_attention_mask is not None: | |
negative_attention_mask = negative_attention_mask.to(device) | |
_, seq_len = negative_attention_mask.shape | |
negative_attention_mask = negative_attention_mask.repeat(1, num_videos_per_prompt) | |
negative_attention_mask = negative_attention_mask.view(batch_size * num_videos_per_prompt, seq_len) | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
if negative_prompt_embeds.ndim == 2: | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_videos_per_prompt) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_videos_per_prompt, -1) | |
else: | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_videos_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) | |
if text_encoder is not None: | |
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: | |
# Retrieve the original scale by scaling back the LoRA layers | |
unscale_lora_layers(text_encoder.model, lora_scale) | |
return prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask | |
def encode_prompt_audio_text_base( | |
self, | |
prompt, | |
uncond_prompt, | |
pixel_value_llava, | |
uncond_pixel_value_llava, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
lora_scale: Optional[float] = None, | |
clip_skip: Optional[int] = None, | |
text_encoder: Optional[TextEncoder] = None, | |
data_type: Optional[str] = "image", | |
): | |
if text_encoder is None: | |
text_encoder = self.text_encoder | |
# set lora scale so that monkey patched LoRA | |
# function of text encoder can correctly access it | |
if lora_scale is not None and isinstance(self, LoraLoaderMixin): | |
self._lora_scale = lora_scale | |
# dynamically adjust the LoRA scale | |
if not USE_PEFT_BACKEND: | |
adjust_lora_scale_text_encoder(text_encoder.model, lora_scale) | |
else: | |
scale_lora_layers(text_encoder.model, lora_scale) | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
prompt_embeds = None | |
if prompt_embeds is None: | |
# textual inversion: process multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, text_encoder.tokenizer) | |
text_inputs = text_encoder.text2tokens(prompt, data_type=data_type) # data_type: video, text_inputs: {'input_ids', 'attention_mask'} | |
text_keys = ['input_ids', 'attention_mask'] | |
if pixel_value_llava is not None: | |
text_inputs['pixel_value_llava'] = pixel_value_llava | |
text_inputs['attention_mask'] = torch.cat([text_inputs['attention_mask'], torch.ones((1, 575)).to(text_inputs['attention_mask'])], dim=1) | |
if clip_skip is None: | |
prompt_outputs = text_encoder.encode(text_inputs, data_type=data_type) | |
prompt_embeds = prompt_outputs.hidden_state | |
else: | |
prompt_outputs = text_encoder.encode(text_inputs, output_hidden_states=True, data_type=data_type) | |
# Access the `hidden_states` first, that contains a tuple of | |
# all the hidden states from the encoder layers. Then index into | |
# the tuple to access the hidden states from the desired layer. | |
prompt_embeds = prompt_outputs.hidden_states_list[-(clip_skip + 1)] | |
# We also need to apply the final LayerNorm here to not mess with the | |
# representations. The `last_hidden_states` that we typically use for | |
# obtaining the final prompt representations passes through the LayerNorm | |
# layer. | |
prompt_embeds = text_encoder.model.text_model.final_layer_norm(prompt_embeds) | |
attention_mask = prompt_outputs.attention_mask | |
if attention_mask is not None: | |
attention_mask = attention_mask.to(device) | |
bs_embed, seq_len = attention_mask.shape | |
attention_mask = attention_mask.repeat(1, num_images_per_prompt) | |
attention_mask = attention_mask.view(bs_embed * num_images_per_prompt, seq_len) | |
if text_encoder is not None: | |
prompt_embeds_dtype = text_encoder.dtype | |
elif self.unet is not None: | |
prompt_embeds_dtype = self.unet.dtype | |
else: | |
prompt_embeds_dtype = prompt_embeds.dtype | |
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
if prompt_embeds.ndim == 2: | |
bs_embed, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, -1) | |
else: | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
# textual inversion: process multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, text_encoder.tokenizer) | |
# max_length = prompt_embeds.shape[1] | |
uncond_input = text_encoder.text2tokens(uncond_tokens, data_type=data_type) | |
# if hasattr(text_encoder.model.config, "use_attention_mask") and text_encoder.model.config.use_attention_mask: | |
# attention_mask = uncond_input.attention_mask.to(device) | |
# else: | |
# attention_mask = None | |
if uncond_pixel_value_llava is not None: | |
uncond_input['pixel_value_llava'] = uncond_pixel_value_llava | |
uncond_input['attention_mask'] = torch.cat([uncond_input['attention_mask'], torch.ones((1, 575)).to(uncond_input['attention_mask'])], dim=1) | |
negative_prompt_outputs = text_encoder.encode(uncond_input, data_type=data_type) | |
negative_prompt_embeds = negative_prompt_outputs.hidden_state | |
negative_attention_mask = negative_prompt_outputs.attention_mask | |
if negative_attention_mask is not None: | |
negative_attention_mask = negative_attention_mask.to(device) | |
_, seq_len = negative_attention_mask.shape | |
negative_attention_mask = negative_attention_mask.repeat(1, num_images_per_prompt) | |
negative_attention_mask = negative_attention_mask.view(batch_size * num_images_per_prompt, seq_len) | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
if negative_prompt_embeds.ndim == 2: | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, -1) | |
else: | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
if text_encoder is not None: | |
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: | |
# Retrieve the original scale by scaling back the LoRA layers | |
unscale_lora_layers(text_encoder.model, lora_scale) | |
return prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask | |
def decode_latents(self, latents, enable_tiling=True): | |
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" | |
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) | |
latents = 1 / self.vae.config.scaling_factor * latents | |
if enable_tiling: | |
self.vae.enable_tiling() | |
image = self.vae.decode(latents, return_dict=False)[0] | |
self.vae.disable_tiling() | |
else: | |
image = self.vae.decode(latents, return_dict=False)[0] | |
image = (image / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
if image.ndim==4: image = image.cpu().permute(0, 2, 3, 1).float() | |
else: image = image.cpu().float() | |
return image | |
def prepare_extra_func_kwargs(self, func, kwargs): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
extra_step_kwargs = {} | |
for k, v in kwargs.items(): | |
accepts = k in set(inspect.signature(func).parameters.keys()) | |
if accepts: | |
extra_step_kwargs[k] = v | |
return extra_step_kwargs | |
def check_inputs( | |
self, | |
prompt, | |
height, | |
width, | |
frame, | |
callback_steps, | |
pixel_value_llava=None, | |
uncond_pixel_value_llava=None, | |
negative_prompt=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
callback_on_step_end_tensor_inputs=None, | |
vae_ver='88-4c-sd' | |
): | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if frame is not None: | |
if '884' in vae_ver: | |
if frame!=1 and (frame-1)%4!=0: | |
raise ValueError(f'`frame` has to be 1 or a multiple of 4 but is {frame}.') | |
elif '888' in vae_ver: | |
if frame!=1 and (frame-1)%8!=0: | |
raise ValueError(f'`frame` has to be 1 or a multiple of 8 but is {frame}.') | |
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if callback_on_step_end_tensor_inputs is not None and not all( | |
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
): | |
raise ValueError( | |
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if pixel_value_llava is not None and uncond_pixel_value_llava is not None: | |
if len(pixel_value_llava) != len(uncond_pixel_value_llava): | |
raise ValueError( | |
"`pixel_value_llava` and `uncond_pixel_value_llava` must have the same length when passed directly, but" | |
f" got: `pixel_value_llava` {len(pixel_value_llava)} != `uncond_pixel_value_llava`" | |
f" {len(uncond_pixel_value_llava)}." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
def get_timesteps(self, num_inference_steps, strength, device): | |
# get the original timestep using init_timestep | |
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
t_start = max(num_inference_steps - init_timestep, 0) | |
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] | |
if hasattr(self.scheduler, "set_begin_index"): | |
self.scheduler.set_begin_index(t_start * self.scheduler.order) | |
return timesteps.to(device), num_inference_steps - t_start | |
def prepare_latents(self, batch_size, num_channels_latents, height, width, frame, dtype, device, generator, latents=None, ref_latents=None, timestep=None): | |
shape = ( | |
batch_size, | |
num_channels_latents, | |
frame, | |
int(height) // self.vae_scale_factor, | |
int(width) // self.vae_scale_factor, | |
) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
latents = latents.to(device) | |
if timestep is not None: | |
init_latents = ref_latents.clone().repeat(1,1,frame,1,1).to(device).to(dtype) | |
latents = latents | |
# Check existence to make it compatible with FlowMatchEulerDiscreteScheduler | |
if hasattr(self.scheduler, "init_noise_sigma"): | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding | |
def get_guidance_scale_embedding( | |
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 | |
) -> torch.Tensor: | |
""" | |
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 | |
Args: | |
w (`torch.Tensor`): | |
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. | |
embedding_dim (`int`, *optional*, defaults to 512): | |
Dimension of the embeddings to generate. | |
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): | |
Data type of the generated embeddings. | |
Returns: | |
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`. | |
""" | |
assert len(w.shape) == 1 | |
w = w * 1000.0 | |
half_dim = embedding_dim // 2 | |
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) | |
emb = w.to(dtype)[:, None] * emb[None, :] | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
if embedding_dim % 2 == 1: # zero pad | |
emb = torch.nn.functional.pad(emb, (0, 1)) | |
assert emb.shape == (w.shape[0], embedding_dim) | |
return emb | |
def guidance_scale(self): | |
return self._guidance_scale | |
def guidance_rescale(self): | |
return self._guidance_rescale | |
def clip_skip(self): | |
return self._clip_skip | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
def do_classifier_free_guidance(self): | |
# return self._guidance_scale > 1 and self.transformer.config.time_cond_proj_dim is None | |
return self._guidance_scale > 1 | |
def cross_attention_kwargs(self): | |
return self._cross_attention_kwargs | |
def num_timesteps(self): | |
return self._num_timesteps | |
def interrupt(self): | |
return self._interrupt | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
ref_latents: Union[torch.Tensor], # [1, 16, 1, h//8, w//8] | |
uncond_ref_latents: Union[torch.Tensor], | |
pixel_value_llava: Union[torch.Tensor], # [1, 3, 336, 336] | |
uncond_pixel_value_llava: Union[torch.Tensor], | |
face_masks: Union[torch.Tensor], # [b f h w] | |
audio_prompts: Union[torch.Tensor], | |
uncond_audio_prompts: Union[torch.Tensor], | |
motion_exp: Union[torch.Tensor], | |
motion_pose: Union[torch.Tensor], | |
fps: Union[torch.Tensor], | |
height: int, | |
width: int, | |
frame: int, | |
data_type: str = "video", | |
num_inference_steps: int = 50, | |
timesteps: List[int] = None, | |
sigmas: List[float] = None, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_videos_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
negative_attention_mask: Optional[torch.Tensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
guidance_rescale: float = 0.0, | |
clip_skip: Optional[int] = None, | |
callback_on_step_end: Optional[ | |
Union[ | |
Callable[[int, int, Dict], None], | |
PipelineCallback, | |
MultiPipelineCallbacks, | |
] | |
] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None, | |
vae_ver: str = "88-4c-sd", | |
enable_tiling: bool = False, | |
n_tokens: Optional[int] = None, | |
embedded_guidance_scale: Optional[float] = None, | |
**kwargs, | |
): | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
height (`int`): | |
The height in pixels of the generated image. | |
width (`int`): | |
The width in pixels of the generated image. | |
video_length (`int`): | |
The number of frames in the generated video. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
passed will be used. Must be in descending order. | |
sigmas (`List[float]`, *optional*): | |
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in | |
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed | |
will be used. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
num_videos_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.Tensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
provided, text embeddings are generated from the `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`HunyuanVideoPipelineOutput`] instead of a | |
plain tuple. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
guidance_rescale (`float`, *optional*, defaults to 0.0): | |
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are | |
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when | |
using zero terminal SNR. | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): | |
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of | |
each denoising step during the inference. with the following arguments: `callback_on_step_end(self: | |
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a | |
list of all tensors as specified by `callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
Examples: | |
Returns: | |
[`~HunyuanVideoPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`HunyuanVideoPipelineOutput`] is returned, | |
otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
second element is a list of `bool`s indicating whether the corresponding generated image contains | |
"not-safe-for-work" (nsfw) content. | |
""" | |
callback = kwargs.pop("callback", None) | |
callback_steps = kwargs.pop("callback_steps", None) | |
if callback is not None: | |
deprecate( | |
"callback", | |
"1.0.0", | |
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
) | |
if callback_steps is not None: | |
deprecate( | |
"callback_steps", | |
"1.0.0", | |
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
) | |
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
cpu_offload = kwargs.get("cpu_offload", 0) | |
# 0. Default height and width to transformer | |
# height = height or self.transformer.config.sample_size * self.vae_scale_factor | |
# width = width or self.transformer.config.sample_size * self.vae_scale_factor | |
# to deal with lora scaling and other possible forward hooks | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
height, | |
width, | |
frame, | |
callback_steps, | |
pixel_value_llava, | |
uncond_pixel_value_llava, | |
negative_prompt, | |
prompt_embeds, | |
negative_prompt_embeds, | |
callback_on_step_end_tensor_inputs, | |
vae_ver=vae_ver | |
) | |
self._guidance_scale = guidance_scale | |
self.start_cfg_scale = guidance_scale | |
self._guidance_rescale = guidance_rescale | |
self._clip_skip = clip_skip | |
self._cross_attention_kwargs = cross_attention_kwargs | |
self._interrupt = False | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# 3. Encode input prompt | |
lora_scale = ( | |
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | |
) | |
# ========== Encode text prompt (image prompt) ========== | |
prompt_embeds, negative_prompt_embeds, prompt_mask, negative_prompt_mask = \ | |
self.encode_prompt_audio_text_base( | |
prompt=prompt, | |
uncond_prompt=negative_prompt, | |
pixel_value_llava=pixel_value_llava, | |
uncond_pixel_value_llava=uncond_pixel_value_llava, | |
device=device, | |
num_images_per_prompt=num_videos_per_prompt, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=lora_scale, | |
clip_skip=self.clip_skip, | |
text_encoder=self.text_encoder, | |
data_type=data_type, | |
# **kwargs | |
) | |
if self.text_encoder_2 is not None: | |
prompt_embeds_2, negative_prompt_embeds_2, prompt_mask_2, negative_prompt_mask_2 = \ | |
self.encode_prompt_audio_text_base( | |
prompt=prompt, | |
uncond_prompt=negative_prompt, | |
pixel_value_llava=None, | |
uncond_pixel_value_llava=None, | |
device=device, | |
num_images_per_prompt=num_videos_per_prompt, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
lora_scale=lora_scale, | |
clip_skip=self.clip_skip, | |
text_encoder=self.text_encoder_2, | |
# **kwargs | |
) | |
else: | |
prompt_embeds_2 = None | |
negative_prompt_embeds_2 = None | |
prompt_mask_2 = None | |
negative_prompt_mask_2 = None | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
if self.do_classifier_free_guidance: | |
prompt_embeds_input = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
if prompt_mask is not None: | |
prompt_mask_input = torch.cat([negative_prompt_mask, prompt_mask]) | |
if prompt_embeds_2 is not None: | |
prompt_embeds_2_input = torch.cat([negative_prompt_embeds_2, prompt_embeds_2]) | |
if prompt_mask_2 is not None: | |
prompt_mask_2_input = torch.cat([negative_prompt_mask_2, prompt_mask_2]) | |
if self.do_classifier_free_guidance: | |
ref_latents = torch.cat([ref_latents, ref_latents], dim=0) | |
# 4. Prepare timesteps | |
extra_set_timesteps_kwargs = self.prepare_extra_func_kwargs( | |
self.scheduler.set_timesteps, {"n_tokens": n_tokens} | |
) | |
timesteps, num_inference_steps = retrieve_timesteps( | |
self.scheduler, num_inference_steps, device, timesteps, sigmas, **extra_set_timesteps_kwargs, | |
) | |
video_length = audio_prompts.shape[1] // 4 * 4 + 1 | |
if "884" in vae_ver: | |
video_length = (video_length - 1) // 4 + 1 | |
elif "888" in vae_ver: | |
video_length = (video_length - 1) // 8 + 1 | |
else: | |
video_length = video_length | |
# 5. Prepare latent variables | |
num_channels_latents = self.transformer.config.in_channels | |
infer_length = (audio_prompts.shape[1] // 128 + 1) * 32 + 1 | |
latents = self.prepare_latents( | |
batch_size * num_videos_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
infer_length, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
ref_latents[-1:], | |
timesteps[:1] | |
) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_func_kwargs( | |
self.scheduler.step, {"generator": generator, "eta": eta}, | |
) | |
target_dtype = PRECISION_TO_TYPE[self.args.precision] | |
autocast_enabled = (target_dtype != torch.float32) and not self.args.val_disable_autocast | |
vae_dtype = PRECISION_TO_TYPE[self.args.vae_precision] | |
vae_autocast_enabled = (vae_dtype != torch.float32) and not self.args.val_disable_autocast | |
# 7. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
self._num_timesteps = len(timesteps) | |
latents_all = latents.clone() | |
pad_audio_length = (audio_prompts.shape[1] // 128 + 1) * 128 + 4 - audio_prompts.shape[1] | |
audio_prompts_all = torch.cat([audio_prompts, torch.zeros_like(audio_prompts[:, :pad_audio_length])], dim=1) | |
shift = 0 | |
shift_offset = 10 | |
frames_per_batch = 33 | |
self.cache_tensor = None | |
""" If the total length is shorter than 129, shift is not required """ | |
if video_length == 33 or infer_length == 33: | |
infer_length = 33 | |
shift_offset = 0 | |
latents_all = latents_all[:, :, :33] | |
audio_prompts_all = audio_prompts_all[:, :132] | |
if cpu_offload: torch.cuda.empty_cache() | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
# init | |
pred_latents = torch.zeros_like( | |
latents_all, | |
dtype=latents_all.dtype, | |
) | |
counter = torch.zeros( | |
(latents_all.shape[0], latents_all.shape[1], infer_length, 1, 1), | |
dtype=latents_all.dtype, | |
).to(device=latents_all.device) | |
for index_start in range(0, infer_length, frames_per_batch): | |
self.scheduler._step_index = None | |
index_start = index_start - shift | |
idx_list = [ii % latents_all.shape[2] for ii in range(index_start, index_start + frames_per_batch)] | |
latents = latents_all[:, :, idx_list].clone() | |
idx_list_audio = [ii % audio_prompts_all.shape[1] for ii in range(index_start * 4, (index_start + frames_per_batch) * 4 - 3)] | |
audio_prompts = audio_prompts_all[:, idx_list_audio].clone() | |
# expand the latents if we are doing classifier free guidance | |
if self.do_classifier_free_guidance: | |
latent_model_input = torch.cat([latents] * 2) | |
else: | |
latent_model_input = latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
if self.do_classifier_free_guidance: | |
if i < 10: | |
self._guidance_scale = (1 - i / len(timesteps)) * (self.start_cfg_scale - 2) + 2 | |
audio_prompts_input = torch.cat([uncond_audio_prompts, audio_prompts], dim=0) | |
face_masks_input = torch.cat([face_masks * 0.6] * 2, dim=0) | |
else: | |
# define 10-50 step cfg | |
self._guidance_scale = (1 - i / len(timesteps)) * (6.5 - 3.5) + 3.5 # 5-2 +2 | |
prompt_embeds_input = torch.cat([prompt_embeds, prompt_embeds]) | |
if prompt_mask is not None: | |
prompt_mask_input = torch.cat([prompt_mask, prompt_mask]) | |
if prompt_embeds_2 is not None: | |
prompt_embeds_2_input = torch.cat([prompt_embeds_2, prompt_embeds_2]) | |
if prompt_mask_2 is not None: | |
prompt_mask_2_input = torch.cat([prompt_mask_2, prompt_mask_2]) | |
audio_prompts_input = torch.cat([uncond_audio_prompts, audio_prompts], dim=0) | |
face_masks_input = torch.cat([face_masks] * 2, dim=0) | |
motion_exp_input = torch.cat([motion_exp] * 2, dim=0) | |
motion_pose_input = torch.cat([motion_pose] * 2, dim=0) | |
fps_input = torch.cat([fps] * 2, dim=0) | |
else: | |
audio_prompts_input = audio_prompts | |
face_masks_input = face_masks | |
motion_exp_input = motion_exp | |
motion_pose_input = motion_pose | |
fps_input = fps | |
t_expand = t.repeat(latent_model_input.shape[0]) | |
guidance_expand = None | |
with torch.autocast(device_type="cuda", dtype=target_dtype, enabled=autocast_enabled): | |
no_cache_steps = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] + list(range(15, 42, 5)) + [41, 42, 43, 44, 45, 46, 47, 48, 49] | |
img_len = (latent_model_input.shape[-1] // 2) * (latent_model_input.shape[-2] // 2) * latent_model_input.shape[-3] | |
img_ref_len = (latent_model_input.shape[-1] // 2) * (latent_model_input.shape[-2] // 2) * (latent_model_input.shape[-3]+1) | |
if i in no_cache_steps: | |
is_cache = False | |
if latent_model_input.shape[-1]*latent_model_input.shape[-2]>64*112 and cpu_offload: | |
if i==0: | |
print(f'cpu_offload={cpu_offload} and {latent_model_input.shape[-2:]} is large, split infer noise-pred') | |
additional_kwargs = { | |
"motion_exp": motion_exp_input[:1], | |
"motion_pose": motion_pose_input[:1], | |
"fps": fps_input[:1], | |
"audio_prompts": audio_prompts_input[:1], | |
"face_mask": face_masks_input[:1] | |
} | |
noise_pred_uncond = self.transformer(latent_model_input[:1], t_expand[:1], ref_latents=ref_latents[:1], text_states=prompt_embeds_input[:1], text_mask=prompt_mask_input[:1], text_states_2=prompt_embeds_2_input[:1], freqs_cos=freqs_cis[0], freqs_sin=freqs_cis[1], guidance=guidance_expand, return_dict=True, is_cache=is_cache, **additional_kwargs,)['x'] | |
uncond_cache_tensor = self.transformer.cache_out | |
torch.cuda.empty_cache() | |
additional_kwargs = { | |
"motion_exp": motion_exp_input[1:], | |
"motion_pose": motion_pose_input[1:], | |
"fps": fps_input[1:], | |
"audio_prompts": audio_prompts_input[1:], | |
"face_mask": face_masks_input[1:] | |
} | |
noise_pred_text = self.transformer(latent_model_input[1:], t_expand[1:], ref_latents=ref_latents[1:], text_states=prompt_embeds_input[1:], text_mask=prompt_mask_input[1:], text_states_2=prompt_embeds_2_input[1:], freqs_cos=freqs_cis[0], freqs_sin=freqs_cis[1], guidance=guidance_expand, return_dict=True, is_cache=is_cache, **additional_kwargs,)['x'] | |
self.transformer.cache_out = torch.cat([uncond_cache_tensor, self.transformer.cache_out], dim=0) | |
noise_pred = torch.cat([noise_pred_uncond, noise_pred_text], dim=0) | |
torch.cuda.empty_cache() | |
else: | |
additional_kwargs = { | |
"motion_exp": motion_exp_input, | |
"motion_pose": motion_pose_input, | |
"fps": fps_input, | |
"audio_prompts": audio_prompts_input, | |
"face_mask": face_masks_input | |
} | |
noise_pred = self.transformer(latent_model_input, t_expand, ref_latents=ref_latents, text_states=prompt_embeds_input, text_mask=prompt_mask_input, text_states_2=prompt_embeds_2_input, freqs_cos=freqs_cis[0], freqs_sin=freqs_cis[1], guidance=guidance_expand, return_dict=True, is_cache=is_cache, **additional_kwargs,)['x'] | |
torch.cuda.empty_cache() | |
if self.cache_tensor is None: | |
self.cache_tensor = { | |
"ref": torch.zeros([latent_model_input.shape[0], latents_all.shape[-3], (latent_model_input.shape[-1] // 2) * (latent_model_input.shape[-2] // 2), 3072]).to(self.transformer.cache_out.dtype).to(latent_model_input.device).clone(), | |
"img": torch.zeros([latent_model_input.shape[0], latents_all.shape[-3], (latent_model_input.shape[-1] // 2) * (latent_model_input.shape[-2] // 2), 3072]).to(self.transformer.cache_out.dtype).to(latent_model_input.device).clone(), | |
"txt": torch.zeros([latent_model_input.shape[0], latents_all.shape[-3], prompt_embeds_input.shape[1], 3072]).to(self.transformer.cache_out.dtype).to(latent_model_input.device).clone(), | |
} | |
self.cache_tensor["ref"][:, idx_list] = self.transformer.cache_out[:, :img_ref_len-img_len].reshape(latent_model_input.shape[0], 1, -1, 3072).repeat(1, len(idx_list), 1, 1) | |
self.cache_tensor["img"][:, idx_list] = self.transformer.cache_out[:, img_ref_len-img_len:img_ref_len].reshape(latent_model_input.shape[0], len(idx_list), -1, 3072) | |
self.cache_tensor["txt"][:, idx_list] = self.transformer.cache_out[:, img_ref_len:].unsqueeze(1).repeat(1, len(idx_list), 1, 1) | |
else: | |
is_cache = True | |
# self.transformer.cache_out[:, :img_ref_len-img_len] = self.cache_tensor["ref"][:, idx_list].mean(1) | |
self.transformer.cache_out[:, :img_ref_len-img_len] = self.cache_tensor["ref"][:, idx_list][:, 0].clone() | |
self.transformer.cache_out[:, img_ref_len-img_len:img_ref_len] = self.cache_tensor["img"][:, idx_list].reshape(-1, img_len, 3072).clone() | |
self.transformer.cache_out[:, img_ref_len:] = self.cache_tensor["txt"][:, idx_list][:, 0].clone() | |
if latent_model_input.shape[-1]*latent_model_input.shape[-2]>64*112 and cpu_offload: | |
if i==0: | |
print(f'cpu_offload={cpu_offload} and {latent_model_input.shape[-2:]} is large, split infer noise-pred') | |
additional_kwargs = { | |
"motion_exp": motion_exp_input[:1], | |
"motion_pose": motion_pose_input[:1], | |
"fps": fps_input[:1], | |
"audio_prompts": audio_prompts_input[:1], | |
"face_mask": face_masks_input[:1] | |
} | |
tmp = self.transformer.cache_out.clone() | |
self.transformer.cache_out = tmp[:1] | |
noise_pred_uncond = self.transformer(latent_model_input[:1], t_expand[:1], ref_latents=ref_latents[:1], text_states=prompt_embeds_input[:1], text_mask=prompt_mask_input[:1], text_states_2=prompt_embeds_2_input[:1], freqs_cos=freqs_cis[0], freqs_sin=freqs_cis[1], guidance=guidance_expand, return_dict=True, is_cache=is_cache, **additional_kwargs,)['x'] | |
torch.cuda.empty_cache() | |
additional_kwargs = { | |
"motion_exp": motion_exp_input[1:], | |
"motion_pose": motion_pose_input[1:], | |
"fps": fps_input[1:], | |
"audio_prompts": audio_prompts_input[1:], | |
"face_mask": face_masks_input[1:] | |
} | |
self.transformer.cache_out = tmp[1:] | |
noise_pred_text = self.transformer(latent_model_input[1:], t_expand[1:], ref_latents=ref_latents[1:], text_states=prompt_embeds_input[1:], text_mask=prompt_mask_input[1:], text_states_2=prompt_embeds_2_input[1:], freqs_cos=freqs_cis[0], freqs_sin=freqs_cis[1], guidance=guidance_expand, return_dict=True, is_cache=is_cache, **additional_kwargs,)['x'] | |
noise_pred = torch.cat([noise_pred_uncond, noise_pred_text], dim=0) | |
self.transformer.cache_out = tmp | |
torch.cuda.empty_cache() | |
else: | |
additional_kwargs = { | |
"motion_exp": motion_exp_input, | |
"motion_pose": motion_pose_input, | |
"fps": fps_input, | |
"audio_prompts": audio_prompts_input, | |
"face_mask": face_masks_input | |
} | |
noise_pred = self.transformer(latent_model_input, t_expand, ref_latents=ref_latents, text_states=prompt_embeds_input, text_mask=prompt_mask_input, text_states_2=prompt_embeds_2_input, freqs_cos=freqs_cis[0], freqs_sin=freqs_cis[1], guidance=guidance_expand, return_dict=True, is_cache=is_cache, **additional_kwargs,)['x'] | |
torch.cuda.empty_cache() | |
# perform guidance | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: | |
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop( | |
"negative_prompt_embeds", negative_prompt_embeds | |
) | |
latents = latents.to(torch.bfloat16) | |
for iii in range(frames_per_batch): | |
p = (index_start + iii) % pred_latents.shape[2] | |
pred_latents[:, :, p] += latents[:, :, iii] | |
counter[:, :, p] += 1 | |
shift += shift_offset | |
shift = shift % frames_per_batch | |
pred_latents = pred_latents / counter | |
latents_all = pred_latents | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ( | |
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 | |
): | |
if progress_bar is not None: | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
latents = latents_all.float()[:, :, :video_length] | |
if cpu_offload: torch.cuda.empty_cache() | |
if not output_type == "latent": | |
expand_temporal_dim = False | |
if len(latents.shape) == 4: | |
if isinstance(self.vae, AutoencoderKLCausal3D): | |
latents = latents.unsqueeze(2) | |
expand_temporal_dim = True | |
elif len(latents.shape) == 5: | |
pass | |
else: | |
raise ValueError( | |
f"Only support latents with shape (b, c, h, w) or (b, c, f, h, w), but got {latents.shape}.") | |
if hasattr(self.vae.config, 'shift_factor') and self.vae.config.shift_factor: | |
latents = latents / self.vae.config.scaling_factor + self.vae.config.shift_factor | |
else: | |
latents = latents / self.vae.config.scaling_factor | |
with torch.autocast(device_type="cuda", dtype=vae_dtype, enabled=vae_autocast_enabled): | |
if enable_tiling: | |
self.vae.enable_tiling() | |
if cpu_offload: | |
self.vae.post_quant_conv.to('cuda') | |
self.vae.decoder.to('cuda') | |
image = self.vae.decode(latents, return_dict=False, generator=generator)[0] | |
self.vae.disable_tiling() | |
if cpu_offload: | |
self.vae.post_quant_conv.to('cpu') | |
self.vae.decoder.to('cpu') | |
torch.cuda.empty_cache() | |
else: | |
image = self.vae.decode(latents, return_dict=False, generator=generator)[0] | |
if image is None: | |
return (None, ) | |
if expand_temporal_dim or image.shape[2] == 1: | |
image = image.squeeze(2) | |
image = (image / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 | |
image = image.cpu().float() | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if cpu_offload: torch.cuda.empty_cache() | |
if not return_dict: | |
return image | |
return HunyuanVideoPipelineOutput(videos=image) | |