import spaces import os import uuid import torch import logging import tempfile import numpy as np import gradio as gr from datetime import datetime from diffusers import WanImageToVideoPipeline from diffusers.utils import export_to_video from huggingface_hub import upload_file from PIL import Image # ----------------- Setup ----------------- logging.basicConfig(level=logging.INFO) HF_MODEL = "rahul7star/rahulAI" dtype = torch.bfloat16 device = "cuda" model_id = "FastDM/Wan2.2-I2V-A14B-Merge-Lightning-V1.0-Diffusers" pipe = WanImageToVideoPipeline.from_pretrained(model_id, torch_dtype=dtype) pipe.to(device) default_negative_prompt = ( "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量," "JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体," "手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走" ) # ----------------- Upload helper ----------------- def upscale_and_upload_4k(input_video_path: str, input_image, summary_text: str) -> str: """ Upload video (4K), input image, and summary text to HF. """ logging.info(f"Upscaling video to 4K for upload: {input_video_path}") # Upscale video with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_upscaled: upscaled_path = tmp_upscaled.name cmd = [ "ffmpeg", "-i", input_video_path, "-vf", "scale=3840:2160:flags=lanczos", "-c:v", "libx264", "-crf", "18", "-preset", "slow", "-y", upscaled_path, ] os.system(" ".join(cmd)) # safer: subprocess.run, but HF Spaces sometimes picky # Create HF folder today_str = datetime.now().strftime("%Y-%m-%d") unique_subfolder = f"upload_{uuid.uuid4().hex[:8]}" hf_folder = f"{today_str}-WAN-I2V/{unique_subfolder}" # Upload video video_filename = os.path.basename(input_video_path) video_hf_path = f"{hf_folder}/{video_filename}" upload_file(upscaled_path, video_hf_path, repo_id=HF_MODEL, repo_type="model", token=os.environ.get("HUGGINGFACE_HUB_TOKEN")) # Upload image with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_img: if isinstance(input_image, str): import shutil shutil.copy(input_image, tmp_img.name) else: input_image.save(tmp_img.name, format="PNG") tmp_img_path = tmp_img.name image_hf_path = f"{hf_folder}/input_image.png" upload_file(tmp_img_path, image_hf_path, repo_id=HF_MODEL, repo_type="model", token=os.environ.get("HUGGINGFACE_HUB_TOKEN")) # Upload summary summary_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt").name with open(summary_file, "w", encoding="utf-8") as f: f.write(summary_text) summary_hf_path = f"{hf_folder}/summary.txt" upload_file(summary_file, summary_hf_path, repo_id=HF_MODEL, repo_type="model", token=os.environ.get("HUGGINGFACE_HUB_TOKEN")) # Cleanup os.remove(upscaled_path) os.remove(tmp_img_path) os.remove(summary_file) return hf_folder # ----------------- Video generation ----------------- def get_duration( input_image, prompt, negative_prompt, duration_seconds, guidance_scale, guidance_scale_2, steps, seed, randomize_seed, progress, ): return steps * 15 @spaces.GPU(duration=70) def generate_video(input_image, prompt, negative_prompt=default_negative_prompt, duration_seconds=2, guidance_scale=3.5, steps=40, seed=0): if input_image is None: return None, "Please upload an image!" # Ensure divisible by patch size max_area = 480 * 832 aspect_ratio = input_image.height / input_image.width mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1] height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value input_image = input_image.resize((width, height)) generator = torch.Generator(device=device).manual_seed(int(seed)) with torch.inference_mode(): output_frames_list = pipe( image=input_image, prompt=prompt, negative_prompt=negative_prompt, height=height, width=width, num_frames=int(duration_seconds * 16), # 16 fps guidance_scale=float(guidance_scale), num_inference_steps=int(steps), generator=generator, ).frames[0] # Save temp video with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: video_path = tmpfile.name export_to_video(output_frames_list, video_path, fps=16) # Upload to HF #hf_folder = upscale_and_upload_4k(video_path, input_image, prompt) return video_path, f"✅ Uploaded to HF: {hf_folder}" # ----------------- Gradio UI ----------------- with gr.Blocks() as demo: gr.Markdown("# 🖼️➡️🎥 Image to Video with Wan 2.2 I2V (14B Lightning)") with gr.Row(): with gr.Column(): input_image = gr.Image(type="pil", label="Upload an Image") prompt = gr.Textbox(lines=4, label="Prompt") negative_prompt = gr.Textbox(value=default_negative_prompt, lines=3, label="Negative Prompt") duration = gr.Slider(1, 4, value=2, step=1, label="Duration (seconds)") guidance_scale = gr.Slider(0, 10, value=3.5, step=0.5, label="Guidance Scale") steps = gr.Slider(10, 50, value=40, step=1, label="Inference Steps") seed = gr.Number(value=0, precision=0, label="Seed") generate_btn = gr.Button("🚀 Generate Video") with gr.Column(): output_video = gr.Video(label="Generated Video") upload_status = gr.Textbox(label="Upload Status", interactive=False) generate_btn.click( generate_video, inputs=[input_image, prompt, negative_prompt, duration, guidance_scale, steps, seed], outputs=[output_video, upload_status], ) if __name__ == "__main__": demo.launch()