import os # ✅ Patch for NVML-related crash in ZeroGPU os.environ["PYTORCH_NO_NVML"] = "1" # ✅ Ensure proper PyTorch version for CUDA 12.6 in Spaces os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9"') import torch from diffusers import AutoencoderKLWan, WanPipeline, UniPCMultistepScheduler from diffusers.utils import export_to_video import gradio as gr import tempfile import spaces from huggingface_hub import hf_hub_download import numpy as np import random # MODEL_ID MODEL_ID = "Runware/Wan2.2-T2V-A14B" # Load model and scheduler (no .to("cuda") yet) vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32) pipe = WanPipeline.from_pretrained(MODEL_ID, vae=vae, torch_dtype=torch.bfloat16) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0) # Configuration MOD_VALUE = 32 DEFAULT_H_SLIDER_VALUE = 768 DEFAULT_W_SLIDER_VALUE = 1344 IS_ORIGINAL_SPACE = os.environ.get("IS_ORIGINAL_SPACE", "True") == "True" LIMITED_MAX_RESOLUTION = 640 LIMITED_MAX_DURATION = 2.0 LIMITED_MAX_STEPS = 4 ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H = 128, 1536 ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W = 128, 1536 ORIGINAL_MAX_DURATION = round(81 / 24, 1) ORIGINAL_MAX_STEPS = 8 if IS_ORIGINAL_SPACE: SLIDER_MIN_H, SLIDER_MAX_H = 128, LIMITED_MAX_RESOLUTION SLIDER_MIN_W, SLIDER_MAX_W = 128, LIMITED_MAX_RESOLUTION MAX_DURATION = LIMITED_MAX_DURATION MAX_STEPS = LIMITED_MAX_STEPS else: SLIDER_MIN_H, SLIDER_MAX_H = ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H SLIDER_MIN_W, SLIDER_MAX_W = ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W MAX_DURATION = ORIGINAL_MAX_DURATION MAX_STEPS = ORIGINAL_MAX_STEPS MAX_SEED = np.iinfo(np.int32).max FIXED_FPS = 24 FIXED_OUTPUT_FPS = 18 MIN_FRAMES_MODEL = 8 MAX_FRAMES_MODEL = 81 default_prompt_t2v = "cinematic footage, group of pedestrians dancing in the streets of NYC, high quality breakdance, 4K, tiktok video, intricate details, instagram feel, dynamic camera, smooth dance motion, dimly lit, stylish, beautiful faces, smiling, music video" default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature" def get_duration(prompt, height, width, negative_prompt, duration_seconds, guidance_scale, steps, seed, randomize_seed, progress): return int(duration_seconds) * int(steps) * 2.25 + 5 @spaces.GPU(duration=get_duration) def generate_video(prompt, height, width, negative_prompt=default_negative_prompt, duration_seconds=2, guidance_scale=1, steps=4, seed=42, randomize_seed=False, progress=gr.Progress(track_tqdm=True)): if not prompt or prompt.strip() == "": raise gr.Error("Please enter a text prompt. Try to use long and precise descriptions.") if IS_ORIGINAL_SPACE: height = min(height, LIMITED_MAX_RESOLUTION) width = min(width, LIMITED_MAX_RESOLUTION) duration_seconds = min(duration_seconds, LIMITED_MAX_DURATION) steps = min(steps, LIMITED_MAX_STEPS) target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE) target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE) num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL) current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) # ✅ Move to GPU inside @spaces.GPU function pipe.to("cuda") with torch.inference_mode(): output_frames_list = pipe( prompt=prompt, negative_prompt=negative_prompt, height=target_h, width=target_w, num_frames=num_frames, guidance_scale=float(guidance_scale), num_inference_steps=int(steps), generator=torch.Generator(device="cuda").manual_seed(current_seed) ).frames[0] with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: video_path = tmpfile.name export_to_video(output_frames_list, video_path, fps=FIXED_OUTPUT_FPS) return video_path, current_seed # Gradio UI with gr.Blocks(css="body { max-width: 100vw; overflow-x: hidden; }") as demo: gr.HTML('') gr.Markdown("# ⚡ InstaVideo") gr.Markdown("This Gradio space is a fork of [wan2-1-fast from multimodalart](https://huggingface.co/spaces/multimodalart/wan2-1-fast), and is powered by the Wan CausVid LoRA [from Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_CausVid_bidirect2_T2V_1_3B_lora_rank32.safetensors).") if IS_ORIGINAL_SPACE: gr.Markdown("⚠️ **This free public demo limits the resolution to 640px, duration to 2s, and inference steps to 4. For full capabilities please duplicate this space.**") with gr.Row(): with gr.Column(): prompt_input = gr.Textbox(label="Prompt", value=default_prompt_t2v) with gr.Accordion("Advanced Settings", open=False): negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3) seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True) randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True) with gr.Row(): height_input = gr.Slider( minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=min(DEFAULT_H_SLIDER_VALUE, SLIDER_MAX_H), label=f"Output Height (multiple of {MOD_VALUE})" ) width_input = gr.Slider( minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=min(DEFAULT_W_SLIDER_VALUE, SLIDER_MAX_W), label=f"Output Width (multiple of {MOD_VALUE})" ) duration_seconds_input = gr.Slider( minimum=round(MIN_FRAMES_MODEL / FIXED_FPS, 1), maximum=MAX_DURATION, step=0.1, value=2, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps." ) steps_slider = gr.Slider(minimum=1, maximum=MAX_STEPS, step=1, value=4, label="Inference Steps") guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False) generate_button = gr.Button("Generate Video", variant="primary") with gr.Column(): video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False) ui_inputs = [ prompt_input, height_input, width_input, negative_prompt_input, duration_seconds_input, guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox ] generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input]) example_configs = [ ["a majestic eagle soaring through mountain peaks, cinematic aerial view", 896, 512], ["a serene ocean wave crashing on a sandy beach at sunset", 448, 832], ["a field of flowers swaying in the wind, spring morning light", 512, 896], ] if IS_ORIGINAL_SPACE: example_configs = [ [example[0], min(example[1], LIMITED_MAX_RESOLUTION), min(example[2], LIMITED_MAX_RESOLUTION)] for example in example_configs ] gr.Examples( examples=example_configs, inputs=[prompt_input, height_input, width_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy" ) if __name__ == "__main__": demo.queue().launch()