Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,642 Bytes
ff052dc d54a2c6 69a8203 65426a8 886d416 4046baa 65426a8 17d4813 886d416 5a0901c 02f7f0d 5a0901c 886d416 a9a00b3 de49789 a9a00b3 de49789 681163e de49789 886d416 681163e d54a2c6 bf9f272 d54a2c6 bf9f272 985cc0d bf9f272 d54a2c6 bf9f272 d54a2c6 3098f22 65426a8 bf9f272 3098f22 d54a2c6 65426a8 bf9f272 886d416 de49789 886d416 d54a2c6 b9a5c9f 886d416 d54a2c6 1f9ee55 4046baa 886d416 b9a5c9f 1f9ee55 b9a5c9f 1f9ee55 b9a5c9f de49789 681163e 4fc218f de49789 b9a5c9f 4046baa d54a2c6 afa05d9 b9a5c9f 4046baa d54a2c6 65426a8 d54a2c6 65426a8 d54a2c6 17d4813 d54a2c6 65426a8 d54a2c6 17d4813 d54a2c6 17d4813 d54a2c6 17d4813 1f9ee55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import gradio as gr
import os
import torch
import tempfile
import sys
from huggingface_hub import snapshot_download
import spaces
# Setup paths
PUSA_PATH = os.path.abspath("./PusaV1")
if PUSA_PATH not in sys.path:
sys.path.insert(0, PUSA_PATH)
# Validate diffsynth presence
DIFFSYNTH_PATH = os.path.join(PUSA_PATH, "diffsynth")
if not os.path.exists(DIFFSYNTH_PATH):
raise RuntimeError(
f"'diffsynth' package not found in {PUSA_PATH}. "
f"Ensure PusaV1 is correctly cloned and folder structure is intact."
)
# Import core modules from PusaV1
from PusaV1.diffsynth import ModelManager, WanVideoPusaPipeline, save_video
class PatchedModelManager(ModelManager):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# Patch architecture dict here
custom_architecture_dict = {
"WanModel": ("diffsynth.models.wan_model", "WanModelPusa", None),
}
self.architecture_dict.update(custom_architecture_dict)
# Constants
import os
from huggingface_hub import snapshot_download
# Constants
MODEL_ZOO_DIR = "./model_zoo"
PUSA_DIR = os.path.join(MODEL_ZOO_DIR, "PusaV1")
WAN_SUBFOLDER = "Wan2.1-T2V-14B"
WAN_MODEL_PATH = os.path.join(PUSA_DIR, WAN_SUBFOLDER)
LORA_PATH = os.path.join(PUSA_DIR, "pusa_v1.pt")
# Ensure model and weights are downloaded
def ensure_model_downloaded():
if not os.path.exists(PUSA_DIR):
print("Downloading RaphaelLiu/PusaV1 to ./model_zoo/PusaV1 ...")
snapshot_download(
repo_id="RaphaelLiu/PusaV1",
local_dir=PUSA_DIR,
repo_type="model",
local_dir_use_symlinks=False,
)
print("β
PusaV1 downloaded.")
if not os.path.exists(WAN_MODEL_PATH):
print("Downloading Wan-AI/Wan2.1-T2V-14B to ./model_zoo/PusaV1/Wan2.1-T2V-14B ...")
snapshot_download(
repo_id="Wan-AI/Wan2.1-T2V-14B",
local_dir=WAN_MODEL_PATH, # Changed from WAN_DIR to WAN_MODEL_PATH
repo_type="model",
local_dir_use_symlinks=False,
)
print("β
Wan2.1-T2V-14B downloaded.")
# Subclass ModelManager to force WanModelPusa
class PatchedModelManager(ModelManager):
def load_model(self, file_path=None, model_names=None, device=None, torch_dtype=None):
if file_path is None:
file_path = self.file_path_list[0]
print(f"[app.py] Forcing architecture: WanModelPusa for {file_path}")
for detector in self.model_detector:
if detector.match(file_path, {}):
model_names, models = detector.load(
file_path,
state_dict={},
device=device or self.device,
torch_dtype=torch_dtype or self.torch_dtype,
allowed_model_names=model_names,
model_manager=self,
forced_architecture="WanModelPusa"
)
for name, model in zip(model_names, models):
self.model.append(model)
self.model_path.append(file_path)
self.model_name.append(name)
return models[0] if models else None
print("No suitable model detector matched.")
return None
# Video generation logic
def generate_t2v_video(self, prompt, lora_alpha, num_inference_steps,
negative_prompt, progress=gr.Progress()):
"""Generate video from text prompt"""
try:
progress(0.1, desc="Loading models...")
lora_path = "./model_zoo/PusaV1/pusa_v1.pt"
pipe = self.load_lora_and_get_pipe("t2v", lora_path, lora_alpha)
progress(0.3, desc="Generating video...")
video = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
height=720, width=1280, num_frames=81,
seed=0, tiled=True
)
progress(0.9, desc="Saving video...")
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
video_filename = os.path.join(self.output_dir, f"t2v_output_{timestamp}.mp4")
save_video(video, video_filename, fps=25, quality=5)
progress(1.0, desc="Complete!")
return video_filename, f"Video generated successfully! Saved to {video_filename}"
except Exception as e:
return None, f"Error: {str(e)}"
@spaces.GPU(duration=200)
def generate_video(prompt: str):
# Load model using patched manager
model_manager = ModelManager(device="cuda")
base_dir = "model_zoo/PusaV1/Wan2.1-T2V-14B"
model_files = sorted([os.path.join(base_dir, f) for f in os.listdir(base_dir) if f.endswith('.safetensors')])
model_manager.load_models(
[
model_files,
os.path.join(base_dir, "models_t5_umt5-xxl-enc-bf16.pth"),
os.path.join(base_dir, "Wan2.1_VAE.pth"),
],
torch_dtype=torch.bfloat16,
)
# manager = ModelManager(
# file_path_list=[WAN_MODEL_PATH],
# torch_dtype=torch.float16,
# device="cuda"
# )
# manager = PatchedModelManager(
# file_path_list=[WAN_MODEL_PATH],
# torch_dtype=torch.float16,
# device="cuda"
# )
#model = manager.load_model(WAN_MODEL_PATH)
# Set up pipeline
#pipeline = WanVideoPusaPipeline(model=model_manager)
pipeline = WanVideoPusaPipeline.from_model_manager(model_manager, torch_dtype=torch.bfloat16, device="cuda")
#pipeline.set_lora_adapters(LORA_PATH)
# Generate video
result = pipeline(prompt)
# Save video
tmp_dir = tempfile.mkdtemp()
output_path = os.path.join(tmp_dir, "video.mp4")
save_video(result.frames, output_path, fps=8)
return output_path
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## π₯ Wan2.1-T2V-14B with Pusa LoRA | Text-to-Video Generator")
prompt_input = gr.Textbox(
lines=4,
label="Prompt",
placeholder="Describe your video (e.g. A coral reef full of colorful fish...)"
)
generate_btn = gr.Button("Generate Video")
video_output = gr.Video(label="Output")
generate_btn.click(fn=generate_video, inputs=prompt_input, outputs=video_output)
if __name__ == "__main__":
ensure_model_downloaded()
demo.launch(share=True, show_error=True)
|