Spaces:
Running
on
Zero
Running
on
Zero
File size: 66,747 Bytes
be645b9 3cb36d7 5b45531 2fe79e3 5b45531 3c2a6ba ea75e76 3cb36d7 ea75e76 be645b9 5b45531 3cb36d7 5b45531 3cb36d7 be645b9 3cb36d7 be645b9 5b45531 3cb36d7 5b45531 2fe79e3 5b45531 3cb36d7 3c2a6ba 3cb36d7 ef14d89 3cb36d7 5b45531 3cb36d7 3c2a6ba 3cb36d7 b3b1c90 3cb36d7 5b45531 3cb36d7 0563485 3cb36d7 5b45531 ea75e76 3c2a6ba ea75e76 3c2a6ba 3cb36d7 0de6c30 22a377f 62c6eb6 0de6c30 9cd78f6 0de6c30 9cd78f6 3c2a6ba 0de6c30 22a377f 0de6c30 62c6eb6 0de6c30 7be995e 0de6c30 3cb36d7 0de6c30 22a377f 0de6c30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 |
import gradio as gr
import os
import torch
import tempfile
import sys
from huggingface_hub import snapshot_download
import spaces
import os
import sys
from huggingface_hub import snapshot_download
# === Setup Paths ===
import os
import sys
from huggingface_hub import snapshot_download
# === Robust Base Path ===
# Ensures compatibility inside Hugging Face Spaces (or any container)
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
PUSA_ROOT = os.path.join(BASE_DIR, "PusaV1")
MODEL_ZOO_DIR = os.path.join(PUSA_ROOT, "model_zoo")
MODEL_ZOO_SUB_DIR = os.path.join(MODEL_ZOO_DIR , "PusaV1")
WAN_SUBFOLDER = "Wan2.1-T2V-14B"
WAN_MODEL_PATH = os.path.join(MODEL_ZOO_SUB_DIR, WAN_SUBFOLDER)
LORA_PATH = os.path.join(MODEL_ZOO_SUB_DIR, "pusa_v1.pt")
# Add PUSA_ROOT to sys.path so Python can import diffsynth
if PUSA_ROOT not in sys.path:
sys.path.insert(0, PUSA_ROOT)
# === Validate diffsynth ===
DIFFSYNTH_PATH = os.path.join(PUSA_ROOT, "diffsynth")
if not os.path.exists(DIFFSYNTH_PATH):
raise RuntimeError(
f"'diffsynth' package not found in {PUSA_ROOT}. "
f"Ensure PusaV1 is correctly cloned and folder structure is intact."
)
# === Ensure models exist, skip download if already present ===
def ensure_model_downloaded():
print("๐ Checking model presence...\n")
# === List contents of model_zoo for verification
print(f"\n๐ Verifying files under: {MODEL_ZOO_SUB_DIR}\n")
for root, dirs, files in os.walk(MODEL_ZOO_SUB_DIR):
for file in files:
full_path = os.path.relpath(os.path.join(root, file), start=MODEL_ZOO_SUB_DIR)
print(" -", full_path)
if not os.path.exists(MODEL_ZOO_DIR):
print("Downloading RaphaelLiu/PusaV1 to ./PusaV1/model_zoo ...")
snapshot_download(
repo_id="RaphaelLiu/PusaV1",
local_dir=MODEL_ZOO_SUB_DIR,
repo_type="model",
local_dir_use_symlinks=False,
)
print("โ
PusaV1 base model downloaded.")
else:
print("โ
PusaV1 base folder already exists.")
if not os.path.exists(WAN_MODEL_PATH):
print("Downloading Wan-AI/Wan2.1-T2V-14B to ./PusaV1/model_zoo/Wan2.1-T2V-14B ...")
snapshot_download(
repo_id="Wan-AI/Wan2.1-T2V-14B",
local_dir=WAN_MODEL_PATH,
repo_type="model",
local_dir_use_symlinks=False,
)
print("โ
Wan2.1-T2V-14B model downloaded.")
else:
print("โ
Wan2.1-T2V-14B folder already exists.")
# if not os.path.exists(LORA_PATH):
# raise FileNotFoundError(
# f"โ Expected LoRA weights 'pusa_v1.pt' not found at {LORA_PATH}. "
# f"Please make sure it exists in your repo."
# )
# else:
# print("โ
LoRA weights (pusa_v1.pt) found.")
# === List contents of model_zoo for verification
print(f"\n๐ Verifying files under: {MODEL_ZOO_SUB_DIR}\n")
for root, dirs, files in os.walk(MODEL_ZOO_SUB_DIR):
for file in files:
full_path = os.path.relpath(os.path.join(root, file), start=MODEL_ZOO_SUB_DIR)
print(" -", full_path)
import gradio as gr
import torch
import os
import sys
import datetime
import shutil
from PIL import Image
import cv2
import numpy as np
from diffsynth import ModelManager, PusaMultiFramesPipeline, PusaV2VPipeline, WanVideoPusaPipeline, save_video
import tempfile
class PusaVideoDemo:
def __init__(self):
print("load class demo=======")
print(WAN_MODEL_PATH)
print("๐ง Initializing DemoLoader...")
# Check WAN model path
if not os.path.exists(WAN_MODEL_PATH):
raise FileNotFoundError(f"โ WAN_MODEL_PATH not found: {WAN_MODEL_PATH}")
print(f"โ
WAN_MODEL_PATH resolved: {WAN_MODEL_PATH}")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model_manager = None
self.multi_frames_pipe = None
self.v2v_pipe = None
self.t2v_pipe = None
self.base_dir = WAN_MODEL_PATH
self.output_dir = "outputs"
os.makedirs(self.output_dir, exist_ok=True)
def load_models(self):
"""Load all models once for efficiency"""
if self.model_manager is None:
print("Loading models...")
self.model_manager = ModelManager(device="cpu")
model_files = sorted([os.path.join(self.base_dir, f) for f in os.listdir(self.base_dir) if f.endswith('.safetensors')])
self.model_manager.load_models(
[
model_files,
os.path.join(self.base_dir, "models_t5_umt5-xxl-enc-bf16.pth"),
os.path.join(self.base_dir, "Wan2.1_VAE.pth"),
],
torch_dtype=torch.bfloat16,
)
print("Models loaded successfully!")
def load_lora_and_get_pipe(self, pipe_type, lora_path, lora_alpha):
"""Load LoRA and return appropriate pipeline"""
self.load_models()
# Load LoRA
self.model_manager.load_lora(lora_path, lora_alpha=lora_alpha)
if pipe_type == "multi_frames":
pipe = PusaMultiFramesPipeline.from_model_manager(self.model_manager, torch_dtype=torch.bfloat16, device=self.device)
pipe.enable_vram_management(num_persistent_param_in_dit=6*10**9)
elif pipe_type == "v2v":
pipe = PusaV2VPipeline.from_model_manager(self.model_manager, torch_dtype=torch.bfloat16, device=self.device)
pipe.enable_vram_management(num_persistent_param_in_dit=6*10**9)
elif pipe_type == "t2v":
pipe = WanVideoPusaPipeline.from_model_manager(self.model_manager, torch_dtype=torch.bfloat16, device=self.device)
pipe.enable_vram_management(num_persistent_param_in_dit=None)
return pipe
def process_video_frames(self, video_path):
"""Process video frames for V2V pipeline"""
if not os.path.isfile(video_path):
raise FileNotFoundError(f"Video file not found: {video_path}")
cap = cv2.VideoCapture(video_path)
frames = []
# Get original video dimensions
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Calculate scaling and cropping parameters
target_width = 1280
target_height = 720
target_ratio = target_width / target_height
original_ratio = width / height
while True:
ret, frame = cap.read()
if not ret:
break
# Resize maintaining aspect ratio
if original_ratio > target_ratio:
# Video is wider than target
new_width = int(height * target_ratio)
# Crop width from center
start_x = (width - new_width) // 2
frame = frame[:, start_x:start_x + new_width]
else:
# Video is taller than target
new_height = int(width / target_ratio)
# Crop height from center
start_y = (height - new_height) // 2
frame = frame[start_y:start_y + new_height]
# Resize to target dimensions
frame = cv2.resize(frame, (target_width, target_height), interpolation=cv2.INTER_LANCZOS4)
# Convert to RGB
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(Image.fromarray(frame))
cap.release()
return frames
def generate_i2v_video(self, image_path, prompt, noise_multiplier,
lora_alpha, num_inference_steps, negative_prompt, progress=gr.Progress()):
"""Generate video from single image (I2V)"""
try:
progress(0.1, desc="Loading models...")
lora_path = "./model_zoo/PusaV1/pusa_v1.pt"
pipe = self.load_lora_and_get_pipe("multi_frames", lora_path, lora_alpha)
progress(0.2, desc="Processing input image...")
# Process single image for I2V
if image_path is None:
raise ValueError("No image provided")
# Handle image path - Gradio with type="filepath" returns the path directly
img = Image.open(image_path)
processed_image = img.convert("RGB").resize((1280, 720), Image.LANCZOS)
# I2V always uses position 0 (first frame)
multi_frame_images = {0: (processed_image, float(noise_multiplier))}
progress(0.4, desc="Generating video...")
video = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
multi_frame_images=multi_frame_images,
num_inference_steps=num_inference_steps,
height=720, width=1280, num_frames=81,
seed=0, tiled=True
)
progress(0.9, desc="Saving video...")
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
video_filename = os.path.join(self.output_dir, f"i2v_output_{timestamp}_noise_{noise_multiplier}_alpha_{lora_alpha}.mp4")
save_video(video, video_filename, fps=25, quality=5)
progress(1.0, desc="Complete!")
return video_filename, f"Video generated successfully! Saved to {video_filename}"
except Exception as e:
return None, f"Error: {str(e)}"
def generate_multi_frames_video(self, image1, image2, image3, num_imgs, prompt, cond_position, noise_multipliers,
lora_alpha, num_inference_steps, negative_prompt, progress=gr.Progress()):
"""Generate video from multiple frames (Start-End, Multi-frame)"""
try:
progress(0.1, desc="Loading models...")
lora_path = "./model_zoo/PusaV1/pusa_v1.pt"
pipe = self.load_lora_and_get_pipe("multi_frames", lora_path, lora_alpha)
progress(0.2, desc="Processing input images...")
# Parse conditioning positions and noise multipliers
cond_pos_list = [int(x.strip()) for x in cond_position.split(',')]
noise_mult_list = [float(x.strip()) for x in noise_multipliers.split(',')]
# Collect images based on num_imgs
image_paths = [image1, image2]
if num_imgs == "3" and image3 is not None:
image_paths.append(image3)
# Filter out None values
image_paths = [path for path in image_paths if path is not None]
if len(image_paths) != len(cond_pos_list) or len(image_paths) != len(noise_mult_list):
raise ValueError("The number of images, conditioning positions, and noise multipliers must be the same.")
# Process images
processed_images = []
for img_path in image_paths:
img = Image.open(img_path)
processed_images.append(img.convert("RGB").resize((1280, 720), Image.LANCZOS))
multi_frame_images = {
cond_pos: (img, noise_mult)
for cond_pos, img, noise_mult in zip(cond_pos_list, processed_images, noise_mult_list)
}
progress(0.4, desc="Generating video...")
video = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
multi_frame_images=multi_frame_images,
num_inference_steps=num_inference_steps,
height=720, width=1280, num_frames=81,
seed=0, tiled=True
)
progress(0.9, desc="Saving video...")
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
video_filename = os.path.join(self.output_dir, f"multi_frame_output_{timestamp}.mp4")
save_video(video, video_filename, fps=25, quality=5)
progress(1.0, desc="Complete!")
return video_filename, f"Video generated successfully! Saved to {video_filename}"
except Exception as e:
return None, f"Error: {str(e)}"
def generate_v2v_video(self, video_path, prompt, cond_position, noise_multipliers,
lora_alpha, num_inference_steps, negative_prompt, progress=gr.Progress()):
"""Generate video from video (V2V completion, extension)"""
try:
progress(0.1, desc="Loading models...")
lora_path = "./model_zoo/PusaV1/pusa_v1.pt"
pipe = self.load_lora_and_get_pipe("v2v", lora_path, lora_alpha)
progress(0.2, desc="Processing input video...")
# Parse conditioning positions and noise multipliers
cond_pos_list = [int(x.strip()) for x in cond_position.split(',')]
noise_mult_list = [float(x.strip()) for x in noise_multipliers.split(',')]
# Process video
conditioning_video = self.process_video_frames(video_path)
progress(0.4, desc="Generating video...")
video = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
conditioning_video=conditioning_video,
conditioning_indices=cond_pos_list,
conditioning_noise_multipliers=noise_mult_list,
num_inference_steps=num_inference_steps,
height=720, width=1280, num_frames=81,
seed=0, tiled=True
)
progress(0.9, desc="Saving video...")
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
output_filename = os.path.basename(video_path).split('.')[0]
video_filename = os.path.join(self.output_dir, f"v2v_{output_filename}_{timestamp}.mp4")
save_video(video, video_filename, fps=25, quality=5)
progress(1.0, desc="Complete!")
return video_filename, f"Video generated successfully! Saved to {video_filename}"
except Exception as e:
return None, f"Error: {str(e)}"
@spaces.GPU(duration=200)
def generate_t2v_video(self, prompt, lora_alpha, num_inference_steps,
negative_prompt, progress=gr.Progress()):
"""Generate video from text prompt"""
try:
progress(0.1, desc="Loading models...")
lora_path = "./model_zoo/PusaV1/pusa_v1.pt"
pipe = self.load_lora_and_get_pipe("t2v", lora_path, lora_alpha)
progress(0.3, desc="Generating video...")
video = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
height=720, width=1280, num_frames=81,
seed=0, tiled=True
)
progress(0.9, desc="Saving video...")
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
video_filename = os.path.join(self.output_dir, f"t2v_output_{timestamp}.mp4")
save_video(video, video_filename, fps=25, quality=5)
progress(1.0, desc="Complete!")
return video_filename, f"Video generated successfully! Saved to {video_filename}"
except Exception as e:
return None, f"Error: {str(e)}"
def create_demo():
demo_instance = PusaVideoDemo()
# Set custom cache directory to avoid permission issues
import tempfile
import os
try:
# Try to use a custom cache directory in the current workspace
cache_dir = os.path.join(os.getcwd(), "gradio_cache")
os.makedirs(cache_dir, exist_ok=True)
os.environ["GRADIO_TEMP_DIR"] = cache_dir
except:
pass # Fall back to default if this fails
# Helper function to safely load demo files
def safe_file_path(file_path):
"""Return file path if it exists, None otherwise"""
try:
if os.path.exists(file_path):
return file_path
except:
pass
return None
# Custom CSS for fancy black design
css = """
/* === Main Theme: "Cosmic Flow" === */
:root {
--color-primary: #22d3ee; /* Cosmic Cyan */
--color-secondary: #ec4899; /* Galactic Pink */
--color-accent: #a78bfa; /* Astral Violet */
--color-background-dark: #0f172a; /* Midnight Slate */
--color-background-light: #1e293b; /* Twilight Slate */
--color-surface: rgba(30, 41, 59, 0.6); /* Glassy Slate */
--color-surface-hover: rgba(30, 41, 59, 0.9);
--color-text-light: #f1f5f9; /* Starlight White */
--color-text-medium: #94a3b8; /* Nebula Gray */
--color-text-dark: #64748b; /* Meteor Gray */
--font-main: 'Inter', 'SF Pro Display', -apple-system, BlinkMacSystemFont, sans-serif;
--radius-lg: 20px;
--radius-md: 12px;
--radius-sm: 8px;
}
/* === Global Styles === */
.gradio-container {
font-family: var(--font-main) !important;
background: linear-gradient(135deg, var(--color-background-dark) 0%, var(--color-background-light) 100%) !important;
color: var(--color-text-light) !important;
}
* {
color: var(--color-text-light);
border-color: rgba(148, 163, 184, 0.1); /* slate-400/10% */
}
/* === Glassmorphism Containers === */
.gr-panel, .gr-box, .gr-group, .gr-column, .gr-tabitem, .gr-accordion {
background: var(--color-surface) !important;
backdrop-filter: blur(12px) !important;
-webkit-backdrop-filter: blur(12px) !important;
border: 1px solid rgba(148, 163, 184, 0.1) !important;
border-radius: var(--radius-lg) !important;
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.2) !important;
transition: all 0.3s ease !important;
}
.gr-panel:hover, .gr-box:hover, .gr-group:hover, .gr-column:hover {
background: var(--color-surface-hover) !important;
border-color: rgba(148, 163, 184, 0.2) !important;
transform: translateY(-2px) scale(1.01);
box-shadow: 0 12px 40px rgba(0, 0, 0, 0.3) !important;
}
/* === Header (Static Nebula) === */
.fancy-header {
text-align: center !important;
background-color: var(--color-background-dark) !important;
padding: 40px !important;
border-radius: var(--radius-lg) !important;
margin-bottom: 40px !important;
border: 1px solid rgba(148, 163, 184, 0.2) !important;
position: relative !important;
overflow: hidden !important;
box-shadow: 0 20px 60px rgba(15, 23, 42, 0.5) !important;
}
.fancy-header::before {
content: '' !important;
position: absolute !important;
top: -150px; left: -150px; right: -150px; bottom: -150px;
background:
radial-gradient(ellipse at 20% 25%, var(--color-primary), transparent 40%),
radial-gradient(ellipse at 80% 30%, var(--color-accent), transparent 40%),
radial-gradient(ellipse at 50% 90%, var(--color-secondary), transparent 45%) !important;
opacity: 0.2 !important;
filter: blur(80px) !important;
transform: scale(1.2) !important;
z-index: 0 !important;
}
.fancy-header > * {
position: relative !important; /* Ensures content is on top of the nebula effect */
z-index: 1 !important;
}
/* === Tabs === */
.gr-tabs { background: transparent !important; }
.gr-tab-nav {
background: rgba(30, 41, 59, 0.8) !important;
border-radius: var(--radius-lg) !important;
padding: 6px !important;
border: none !important;
}
.gr-tab-nav button {
background: transparent !important;
color: var(--color-text-medium) !important;
border-radius: var(--radius-md) !important;
font-weight: 600 !important;
transition: all 0.3s ease !important;
padding: 12px 20px !important;
border: none !important;
}
.gr-tab-nav button:hover {
background: rgba(167, 139, 250, 0.2) !important;
color: var(--color-text-light) !important;
}
.gr-tab-nav button.selected {
background: linear-gradient(135deg, var(--color-primary) 0%, var(--color-accent) 100%) !important;
color: white !important;
box-shadow: 0 8px 25px rgba(34, 211, 238, 0.3) !important;
}
/* === Primary Generate Button === */
.generate-btn, .primary-btn, button.primary, .gr-button-primary {
background: linear-gradient(135deg, var(--color-primary) 0%, var(--color-secondary) 100%) !important;
background-size: 250% 250% !important;
border: 2px solid transparent !important;
border-radius: var(--radius-lg) !important;
color: white !important;
font-weight: 700 !important;
padding: 18px 36px !important;
text-transform: uppercase !important;
letter-spacing: 1.5px !important;
transition: all 0.4s ease !important;
box-shadow: 0 10px 30px rgba(34, 211, 238, 0.2), 0 10px 30px rgba(236, 72, 153, 0.2) !important;
position: relative;
overflow: hidden;
z-index: 1;
}
.generate-btn::before, .primary-btn::before {
content: '' !important;
position: absolute !important;
top: 0; left: -100%; width: 100%; height: 100%;
background: linear-gradient(120deg, transparent, rgba(255,255,255,0.4), transparent);
transition: left 0.6s ease;
z-index: -1;
}
.generate-btn:hover::before, .primary-btn:hover::before {
left: 100%;
}
.generate-btn:hover, .primary-btn:hover {
transform: translateY(-5px) scale(1.03) !important;
box-shadow: 0 15px 40px rgba(34, 211, 238, 0.4), 0 15px 40px rgba(236, 72, 153, 0.4) !important;
background-position: 100% 50% !important;
}
/* === Secondary & Tertiary Buttons (e.g., "Load Example") === */
button:not(.primary):not(.selected) {
background: rgba(148, 163, 184, 0.1) !important;
border: 1px solid rgba(148, 163, 184, 0.2) !important;
color: var(--color-text-medium) !important;
border-radius: var(--radius-md) !important;
padding: 10px 20px !important;
font-weight: 500 !important;
transition: all 0.3s ease !important;
}
button:not(.primary):not(.selected):hover {
background: var(--color-accent) !important;
border-color: var(--color-accent) !important;
color: white !important;
transform: translateY(-2px);
box-shadow: 0 6px 20px rgba(167, 139, 250, 0.3) !important;
}
/* === Input Fields & Textareas === */
input, textarea, .gr-textbox, .gr-number {
background: rgba(15, 23, 42, 0.8) !important; /* Midnight Slate dark */
border: 1px solid rgba(148, 163, 184, 0.2) !important;
border-radius: var(--radius-md) !important;
color: var(--color-text-light) !important;
padding: 12px !important;
transition: all 0.3s ease !important;
}
input:focus, textarea:focus, .gr-textbox:focus-within, .gr-number:focus-within {
border-color: var(--color-primary) !important;
box-shadow: 0 0 15px rgba(34, 211, 238, 0.2) !important;
outline: none !important;
}
input::placeholder, textarea::placeholder {
color: var(--color-text-dark) !important;
}
/* === Sliders === */
.gr-slider {
--slider-track-color: rgba(15, 23, 42, 0.9);
--slider-range-color: linear-gradient(90deg, var(--color-primary) 0%, var(--color-accent) 100%);
--slider-handle-color: white;
--slider-handle-shadow: 0 4px 15px rgba(34, 211, 238, 0.4);
}
.gradio-container .gr-slider .gr-slider-track { background: var(--slider-track-color) !important; }
.gradio-container .gr-slider .gr-slider-range { background: var(--slider-range-color) !important; }
.gradio-container .gr-slider .gr-slider-handle {
background: var(--slider-handle-color) !important;
border: 2px solid var(--color-primary) !important;
box-shadow: var(--slider-handle-shadow) !important;
}
/* === File Upload === */
.gr-file, .gr-upload {
background: rgba(15, 23, 42, 0.7) !important;
border: 2px dashed var(--color-text-dark) !important;
border-radius: var(--radius-lg) !important;
transition: all 0.3s ease !important;
}
.gr-file:hover, .gr-upload:hover {
border-color: var(--color-primary) !important;
background: rgba(34, 211, 238, 0.1) !important;
}
.gr-file *, .gr-upload * { color: var(--color-text-medium) !important; background: transparent !important; }
/* === Markdown & Text === */
.gr-markdown { color: var(--color-text-light) !important; }
.gr-markdown h1, .gr-markdown h2, .gr-markdown h3 {
background: linear-gradient(90deg, var(--color-primary) 0%, var(--color-secondary) 100%);
-webkit-background-clip: text;
-moz-background-clip: text;
background-clip: text;
-webkit-text-fill-color: transparent;
margin-bottom: 1rem;
}
.gr-markdown a {
color: var(--color-primary) !important;
text-decoration: none !important;
transition: all 0.2s ease;
}
.gr-markdown a:hover {
color: var(--color-secondary) !important;
text-decoration: underline !important;
}
label {
color: var(--color-text-medium) !important;
font-weight: 600 !important;
margin-bottom: 8px !important;
text-transform: uppercase;
font-size: 0.8rem;
letter-spacing: 0.5px;
}
.gr-info {
color: var(--color-text-dark) !important;
font-style: italic;
}
/* === Progress Bar === */
.gr-progress {
background: rgba(15, 23, 42, 0.8) !important;
border-radius: var(--radius-sm) !important;
}
.gr-progress-bar {
background: linear-gradient(90deg, var(--color-primary) 0%, var(--color-accent) 100%) !important;
border-radius: var(--radius-sm) !important;
}
/* === Scrollbar === */
::-webkit-scrollbar { width: 10px; }
::-webkit-scrollbar-track { background: var(--color-background-light); }
::-webkit-scrollbar-thumb {
background: linear-gradient(var(--color-accent), var(--color-primary));
border-radius: 5px;
}
::-webkit-scrollbar-thumb:hover {
background: linear-gradient(var(--color-primary), var(--color-secondary));
}
/* === Final cleanup & overrides === */
.gradio-container .prose {
color: var(--color-text-light) !important;
}
.gradio-container .gr-button * {
color: inherit !important;
}
"""
with gr.Blocks(css=css, title="โจ Pusa V1.0 - Revolutionary AI Video Generation โจ", theme=gr.themes.Default(primary_hue="purple", neutral_hue="gray").set(
body_background_fill="linear-gradient(135deg, #0f172a 0%, #1e293b 100%)",
background_fill_primary="#1e293b",
background_fill_secondary="#0f172a",
border_color_primary="rgba(148, 163, 184, 0.1)"
)) as demo:
# Header
gr.HTML("""
<div class="fancy-header">
<div style="position: relative; z-index: 1;">
<h1 style="font-size: 3.5em; margin-bottom: 20px; text-shadow: 0 4px 15px rgba(0,0,0,0.4); background: none !important; color: white !important;">
โจ PUSA V1.0 โจ
</h1>
<h2 style="font-size: 1.4em; margin-bottom: 15px; opacity: 0.95; background: none !important; color: white !important;">
๐ฌ Revolutionary Video Generation with Vectorized Timestep Adaptation
</h2>
<p style="font-size: 1.2em; margin-bottom: 10px; background: none !important; color: white !important;">
๐ฅ <strong>BREAKTHROUGH PERFORMANCE:</strong> Surpassing Wan-I2V on Vbench-I2V with only $500 training cost! ๐ฅ
</p>
<p style="font-size: 1.1em; opacity: 0.9; background: none !important; color: white !important;">
๐ <strong>4 Powerful Modes:</strong> I2V โข Multi-Frame โข V2V โข T2V ๐
</p>
<div style="margin-top: 20px; font-size: 0.9em; opacity: 0.8; background: none !important; color: white !important;">
๐ State-of-the-Art โข โก Lightning Fast โข ๐ฏ Precision Control โข ๐ Professional Quality
</div>
</div>
</div>
""")
# Set default LoRA path (hidden from users)
lora_path = "./model_zoo/PusaV1/pusa_v1.pt"
# Tabs for different functionalities
with gr.Tabs():
# Tab 1: Image-to-Video (I2V)
with gr.TabItem("๐จ Image-to-Video"):
gr.Markdown("""
### Image-to-Video Generation (I2V)
Generate videos from a single starting image. Perfect for bringing static images to life with natural motion and animation.
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### ๐ท Input Image")
image_input = gr.Image(
label="Upload Single Image",
type="filepath", # This returns the file path directly
height=300
)
gr.Markdown("#### โ๏ธ Generation Parameters")
with gr.Group():
noise_multiplier_i2v = gr.Slider(
minimum=0.0, maximum=1.0, value=0.2, step=0.1,
label="Noise Multiplier",
info="Controls how faithful the generation is to the input image (0=faithful, 1=creative)"
)
lora_alpha_i2v = gr.Slider(
minimum=0.5, maximum=3.0, value=1.4, step=0.1,
label="LoRA Alpha",
info="Controls temporal consistency (1-2 recommended)"
)
steps_i2v = gr.Slider(
minimum=10, maximum=50, value=10, step=5,
label="Inference Steps"
)
with gr.Column(scale=1):
gr.Markdown("#### ๐ Text Prompts")
prompt_i2v = gr.Textbox(
lines=4,
label="Prompt",
placeholder="Describe the motion and animation you want to see in the video..."
)
negative_prompt_i2v = gr.Textbox(
lines=3,
value="Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards",
label="Negative Prompt"
)
generate_i2v_btn = gr.Button("๐ฌ Generate I2V Video", variant="primary", size="lg", elem_classes=["generate-btn", "primary-btn"])
gr.Markdown("#### ๐น Output")
video_output_i2v = gr.Video(label="Generated Video")
status_i2v = gr.Textbox(label="Status", interactive=False)
# Demo examples for I2V
gr.Markdown("### ๐ญ Demo Examples")
with gr.Accordion("Example 1: Monk Meditation", open=False):
gr.Markdown("""
**Prompt:** "A wide-angle shot shows a serene monk meditating with gentle swaying and peaceful movement..."
- **Noise Multiplier:** 0.2
- **LoRA Alpha:** 1.4
""")
gr.Button("Load Example 1").click(
lambda: (0.2, 1.4, "A wide-angle shot shows a serene monk meditating perched atop a pile of weathered rocks that spell out 'ZEN'. The scene is bathed in warm sunrise light with gentle swaying movement."),
outputs=[noise_multiplier_i2v, lora_alpha_i2v, prompt_i2v]
)
with gr.Accordion("Example 2: Space Adventure", open=False):
gr.Markdown("""
**Prompt:** "A female climber rock climbing on an asteroid in deep space with dynamic movement..."
- **Noise Multiplier:** 0.3
- **LoRA Alpha:** 1.2
""")
gr.Button("Load Example 2").click(
lambda: (0.3, 1.2, "A low-angle, long exposure shot of a lone female climber, wearing shorts and tank top rock climbing on a massive asteroid in deep space. The climber moves methodically with focused determination."),
outputs=[noise_multiplier_i2v, lora_alpha_i2v, prompt_i2v]
)
# Tab 2: Multi-Frames to Video
with gr.TabItem("๐ผ๏ธ Multi-Frames to Video"):
gr.Markdown("""
### Multi-Frames to Video Generation
Generate videos using multiple conditioning frames for advanced control:
- **Start-End Frames**: Create smooth transitions between two frames
- **Multi-frame Conditioning**: Use multiple frames for complex scenarios
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### ๐ท Input Images")
# Replace gr.Files with multiple gr.Image components for better display
with gr.Row():
image1_input = gr.Image(label="Image 1", type="filepath", height=200)
image2_input = gr.Image(label="Image 2", type="filepath", height=200)
image3_input = gr.Image(label="Image 3 (Optional)", type="filepath", height=200)
# Add a textbox to specify how many images are being used
num_images = gr.Dropdown(
choices=["2", "3"],
value="2",
label="Number of Images"
)
gr.Markdown("#### ๐ฏ Conditioning Parameters")
with gr.Group():
cond_position_multi = gr.Textbox(
value="0,20",
label="Conditioning Positions",
info="Comma-separated frame indices (0-20). E.g., '0,20' for start-end, '0,10,20' for multi-frame"
)
noise_multipliers_multi = gr.Textbox(
value="0.2,0.5",
label="Noise Multipliers",
info="Comma-separated values (0-1). Controls noise for each frame. E.g., '0.2,0.5' for start-end"
)
gr.Markdown("#### โ๏ธ Generation Parameters")
with gr.Group():
lora_alpha_multi = gr.Slider(
minimum=0.5, maximum=3.0, value=1.4, step=0.1,
label="LoRA Alpha",
info="Controls temporal consistency (1-2 recommended)"
)
steps_multi = gr.Slider(
minimum=10, maximum=50, value=10, step=5,
label="Inference Steps"
)
with gr.Column(scale=1):
gr.Markdown("#### ๐ Text Prompts")
prompt_multi = gr.Textbox(
lines=4,
label="Prompt",
placeholder="Describe the transition or sequence you want to generate..."
)
negative_prompt_multi = gr.Textbox(
lines=3,
value="Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards",
label="Negative Prompt"
)
generate_multi_btn = gr.Button("๐ฌ Generate Multi-Frame Video", variant="primary", size="lg", elem_classes=["generate-btn", "primary-btn"])
gr.Markdown("#### ๐น Output")
video_output_multi = gr.Video(label="Generated Video")
status_multi = gr.Textbox(label="Status", interactive=False)
# Demo examples for Multi-Frame
gr.Markdown("### ๐ญ Demo Examples")
with gr.Accordion("Example 1: Start-End Transition", open=False):
gr.Markdown("""
**Prompt:** "Plastic injection machine opens releasing a soft inflatable figure..."
- **Conditioning Position:** 0,20 (first and last frame)
- **Noise Multiplier:** 0.2,0.5
- **LoRA Alpha:** 1.4
""")
gr.Button("Load Example 1").click(
lambda: ("0,20", "0.2,0.5", 1.4, "Plastic injection machine opens releasing a soft inflatable foamy morphing sticky figure over a hand. Isometric. Low light. Dramatic light. Macro shot. Real footage"),
outputs=[cond_position_multi, noise_multipliers_multi, lora_alpha_multi, prompt_multi]
)
with gr.Accordion("Example 2: Multi-Frame Sequence", open=False):
gr.Markdown("""
**Prompt:** "Smooth transformation sequence with gradual changes..."
- **Conditioning Position:** 0,10,20 (beginning, middle, end)
- **Noise Multiplier:** 0.2,0.4,0.6
- **LoRA Alpha:** 1.5
""")
gr.Button("Load Example 2").click(
lambda: ("0,10,20", "0.2,0.4,0.6", 1.5, "A smooth transformation sequence showing gradual morphing with consistent lighting and style throughout the video."),
outputs=[cond_position_multi, noise_multipliers_multi, lora_alpha_multi, prompt_multi]
)
# Tab 3: Video-to-Video
with gr.TabItem("๐ฅ Video-to-Video"):
gr.Markdown("""
### Video-to-Video Generation
Transform existing videos with various conditioning strategies:
- **Video Completion**: Fill in missing parts using start-end frames
- **Video Extension**: Extend video duration using initial frames
- **Video Transition**: Create smooth transitions between scenes
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### ๐ฌ Input Video")
video_input = gr.File(
file_types=["video"],
label="Upload Video (minimum 81 frames)"
)
gr.Markdown("#### ๐ฏ Conditioning Parameters")
with gr.Group():
cond_position_v2v = gr.Textbox(
value="0,20",
label="Conditioning Positions",
info="Frame indices for conditioning. E.g., '0,20' for completion, '0,1,2,3' for extension"
)
noise_multipliers_v2v = gr.Textbox(
value="0.3,0.3",
label="Noise Multipliers",
info="Noise levels for each conditioning frame"
)
gr.Markdown("#### โ๏ธ Generation Parameters")
with gr.Group():
lora_alpha_v2v = gr.Slider(
minimum=0.5, maximum=3.0, value=1.4, step=0.1,
label="LoRA Alpha"
)
steps_v2v = gr.Slider(
minimum=10, maximum=50, value=10, step=5,
label="Inference Steps"
)
with gr.Column(scale=1):
gr.Markdown("#### ๐ Text Prompts")
prompt_v2v = gr.Textbox(
lines=4,
label="Prompt",
placeholder="Describe how you want to transform the video..."
)
negative_prompt_v2v = gr.Textbox(
lines=3,
value="Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards",
label="Negative Prompt"
)
generate_v2v_btn = gr.Button("๐ฌ Generate Video", variant="primary", size="lg", elem_classes=["generate-btn", "primary-btn"])
gr.Markdown("#### ๐น Output")
video_output_v2v = gr.Video(label="Generated Video")
status_v2v = gr.Textbox(label="Status", interactive=False)
# Demo examples for V2V
gr.Markdown("### ๐ญ Demo Examples")
with gr.Accordion("Example 1: Video Completion", open=False):
gr.Markdown("""
**Prompt:** "Piggy bank surfing a tube in Teahupoo wave at dusk..."
- **Conditioning Position:** 0,20 (start and end frames)
- **Noise Multiplier:** 0.3,0.3
""")
gr.Button("Load Example 1").click(
lambda: ("0,20", "0.3,0.3", "Piggy bank surfing a tube in teahupo'o wave dusk light cinematic shot shot in 35mm film"),
outputs=[cond_position_v2v, noise_multipliers_v2v, prompt_v2v]
)
with gr.Accordion("Example 2: Video Extension", open=False):
gr.Markdown("""
**Prompt:** "Piggy bank surfing a tube in Teahupoo wave at dusk..."
- **Conditioning Position:** 0,1,2,3 (first 4 latent frames)
- **Noise Multiplier:** 0.0,0.3,0.4,0.5
""")
gr.Button("Load Example 2").click(
lambda: ("0,1,2,3", "0.0,0.3,0.4,0.5", "Piggy bank surfing a tube in teahupo'o wave dusk light cinematic shot shot in 35mm film"),
outputs=[cond_position_v2v, noise_multipliers_v2v, prompt_v2v]
)
# Tab 4: Text-to-Video
with gr.TabItem("๐ Text-to-Video"):
gr.Markdown("""
### Text-to-Video Generation
Generate videos directly from text descriptions. Create entirely new video content from your imagination!
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("#### ๐ Text Prompts")
prompt_t2v = gr.Textbox(
lines=6,
label="Prompt",
placeholder="Describe the video you want to create in detail...",
value="A person is enjoying a meal of spaghetti with a fork in a cozy, dimly lit Italian restaurant."
)
negative_prompt_t2v = gr.Textbox(
lines=4,
value="Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards",
label="Negative Prompt"
)
gr.Markdown("#### โ๏ธ Generation Parameters")
with gr.Group():
lora_alpha_t2v = gr.Slider(
minimum=0.5, maximum=3.0, value=1.4, step=0.1,
label="LoRA Alpha",
info="Controls generation quality and consistency"
)
steps_t2v = gr.Slider(
minimum=1, maximum=50, value=10, step=5,
label="Inference Steps"
)
with gr.Column(scale=1):
generate_t2v_btn = gr.Button("๐ฌ Generate Video", variant="primary", size="lg", elem_classes=["generate-btn", "primary-btn"])
gr.Markdown("#### ๐น Output")
video_output_t2v = gr.Video(label="Generated Video")
status_t2v = gr.Textbox(label="Status", interactive=False)
# Demo examples for T2V
gr.Markdown("### ๐ญ Demo Examples")
with gr.Accordion("Example 1: Restaurant Scene", open=True):
gr.Markdown("""
**Prompt:** "A person enjoying spaghetti in a cozy Italian restaurant..."
""")
gr.Button("Load Example 1").click(
lambda: "A person is enjoying a meal of spaghetti with a fork in a cozy, dimly lit Italian restaurant. The person has warm, friendly features and is dressed casually but stylishly in jeans and a colorful sweater. They are sitting at a small, round table, leaning slightly forward as they eat with enthusiasm. The spaghetti is piled high on their plate, with some strands hanging over the edge. The background shows soft lighting from nearby candles and a few other diners in the corner, creating a warm and inviting atmosphere. The scene captures a close-up view of the person's face and hands as they take a bite of spaghetti, with subtle movements of their mouth and fork. The overall style is realistic with a touch of warmth and authenticity, reflecting the comfort of a genuine dining experience.",
outputs=[prompt_t2v]
)
with gr.Accordion("Example 2: Space Adventure", open=False):
gr.Markdown("""
**Prompt:** "A female climber rock climbing on an asteroid in deep space..."
""")
gr.Button("Load Example 2").click(
lambda: "A low-angle, long exposure shot of a lone female climber, wearing shorts and tank top rock climbing on a massive asteroid in deep space. The climber is suspended against a star-filled void. Dramatic shadows across the asteroid's rugged surface, emphasizing the climber's isolation and the scale of the space rock. Dust particles float in the light beams, catching the light. The climber moves methodically, with focused determination.",
outputs=[prompt_t2v]
)
# Demo Gallery Section
with gr.Group():
gr.HTML("""
<div style="text-align: center; padding: 25px; background: linear-gradient(135deg, rgba(34, 211, 238, 0.1) 0%, rgba(167, 139, 250, 0.1) 100%); border-radius: 20px; margin: 20px 0; border: 1px solid rgba(34, 211, 238, 0.2);">
<h2 style="background: linear-gradient(135deg, var(--color-primary) 0%, var(--color-accent) 100%); background-clip: text; -webkit-background-clip: text; -webkit-text-fill-color: transparent; margin-bottom: 20px; font-size: 2.2em;">
๐ฌ Demo Gallery - See Pusa V1.0 in Action!
</h2>
<p style="font-size: 1.2em; line-height: 1.6; margin-bottom: 15px; color: var(--color-text-light);">
Explore real examples showcasing the power and versatility of Pusa V1.0 across different generation modes.
</p>
<p style="font-size: 1.0em; margin-bottom: 10px; color: var(--color-text-medium); font-style: italic;">
๐ Note: Demo files should be placed in ./demos/ and ./assets/ directories to display properly.
</p>
</div>
""")
with gr.Tabs():
# Image-to-Video Demo
with gr.TabItem("๐จ I2V Demo Results"):
gr.Markdown("### ๐ทโก๏ธ๐ฌ Image-to-Video Generation Example")
with gr.Row():
with gr.Column():
gr.Markdown("#### ๐ผ๏ธ Input Image")
demo_input_image = gr.Image(
value=safe_file_path("./demos/input_image.jpg"),
label="Monk Meditation Scene",
interactive=False
)
gr.Markdown("""
**Settings Used:**
- **Prompt:** "A wide-angle shot shows a serene monk meditating perched a top of the letter E of a pile of weathered rocks that vertically spell out 'ZEN'. The rock formation is perched atop a misty mountain peak at sunrise..."
- **Conditioning Position:** 0 (first frame)
- **Noise Multiplier:** 0.2
- **LoRA Alpha:** 1.4
- **Inference Steps:** 30
- **File Path:** ./demos/input_image.jpg
""")
with gr.Column():
gr.Markdown("#### ๐ฅ Generated Video")
demo_i2v_video = gr.Video(
value=safe_file_path("./assets/multi_frame_output_cond_0_noise_0p2.mp4"),
label="I2V Result - Single Image Animation",
height=400
)
# Multi-Frame Demo
with gr.TabItem("๐ผ๏ธ Multi-Frame Demo Results"):
gr.Markdown("### ๐ฏ Start-End Frame Generation Example")
with gr.Row():
with gr.Column():
gr.Markdown("#### ๐ผ๏ธ Input Frames")
with gr.Row():
start_frame = gr.Image(
value=safe_file_path("./demos/start_frame.jpg"),
label="Start Frame (Position 0)",
interactive=False
)
end_frame = gr.Image(
value=safe_file_path("./demos/end_frame.jpg"),
label="End Frame (Position 20)",
interactive=False
)
gr.Markdown("""
**Settings Used:**
- **Prompt:** "plastic injection machine opens releasing a soft inflatable foamy morphing sticky figure over a hand. isometric. low light. dramatic light. macro shot. real footage"
- **Conditioning Positions:** 0,20 (start and end frames)
- **Noise Multipliers:** 0.2,0.5
- **LoRA Alpha:** 1.4
- **Inference Steps:** 30
- **File Paths:** ./demos/start_frame.jpg, ./demos/end_frame.jpg
""")
with gr.Column():
gr.Markdown("#### ๐ฅ Generated Video")
demo_multi_video = gr.Video(
value=safe_file_path("./assets/multi_frame_output_cond_0_20_noise_0p2_0p5.mp4"),
label="Start-End Frame Transition",
height=400
)
# Video-to-Video Demo
with gr.TabItem("๐ฅ V2V Demo Results"):
gr.Markdown("### ๐ฌโก๏ธ๐ฌ Video Extension Example")
with gr.Row():
with gr.Column():
gr.Markdown("#### ๐น Input Video")
demo_input_video = gr.Video(
value=safe_file_path("./demos/input_video.mp4"),
label="Original Video (Input for Extension)",
height=300
)
gr.Markdown("""
**Settings Used:**
- **Prompt:** "piggy bank surfing a tube in teahupo'o wave dusk light cinematic shot shot in 35mm film"
- **Conditioning Positions:** 0,1,2,3 (first 4 latent frames)
- **Noise Multipliers:** 0.0,0.3,0.4,0.5
- **LoRA Alpha:** 1.4
- **Inference Steps:** 30
- **Task:** Video Extension (using first 13 frames as conditioning)
- **File Path:** ./demos/input_video.mp4
""")
with gr.Column():
gr.Markdown("#### ๐ฅ Extended Video")
demo_v2v_video = gr.Video(
value=safe_file_path("./assets/v2v_input_video_cond_0_1_2_3_noise_0p0_0p3_0p4_0p5.mp4"),
label="V2V Extension Result (81 frames total)",
height=400
)
# Text-to-Video Demo
with gr.TabItem("๐ T2V Demo Results"):
gr.Markdown("### ๐โก๏ธ๐ฌ Text-to-Video Generation Example")
with gr.Row():
with gr.Column():
gr.Markdown("#### ๐ Text Prompt")
gr.Textbox(
value="A person is enjoying a meal of spaghetti with a fork in a cozy, dimly lit Italian restaurant. The person has warm, friendly features and is dressed casually but stylishly in jeans and a colorful sweater. They are sitting at a small, round table, leaning slightly forward as they eat with enthusiasm. The spaghetti is piled high on their plate, with some strands hanging over the edge. The background shows soft lighting from nearby candles and a few other diners in the corner, creating a warm and inviting atmosphere. The scene captures a close-up view of the person's face and hands as they take a bite of spaghetti, with subtle movements of their mouth and fork. The overall style is realistic with a touch of warmth and authenticity, reflecting the comfort of a genuine dining experience.",
label="Input Prompt",
lines=8,
interactive=False
)
gr.Markdown("""
**Settings Used:**
- **LoRA Alpha:** 1.4
- **Inference Steps:** 30
- **Negative Prompt:** "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality..."
- **Task:** Pure Text-to-Video Generation (81 frames)
- **File Path:** ./assets/t2v_output.mp4
""")
with gr.Column():
gr.Markdown("#### ๐ฅ Generated Video")
demo_t2v_video = gr.Video(
value=safe_file_path("./assets/t2v_output.mp4"),
label="T2V Result - Generated from Text Only",
height=400
)
# Comparison Section
with gr.TabItem("๐ Method Comparison"):
gr.Markdown("### ๐ Pusa V1.0 vs Other Methods")
with gr.Group():
gr.Markdown("""
#### ๐ Performance Highlights
**Pusa V1.0 achieves breakthrough efficiency:**
- ๐ฐ **Training Cost:** Only $500 vs $10,000+ for comparable methods
- ๐ **Data Efficiency:** 4K training samples vs 100K+ typically required
- ๐ฏ **Performance:** Surpasses Wan-I2V on Vbench-I2V metrics
- ๐ง **Versatility:** 4 generation modes in one unified model
""")
with gr.Row():
with gr.Column():
gr.Markdown("""
#### โก Technical Innovation
- **Vectorized Timestep Adaptation (VTA)** for fine-grained temporal control
- **LoRA with large rank (512)** for efficient approximation of full fine-tuning
- **Multi-task capabilities** without task-specific training
- **Preserved T2V abilities** while gaining new I2V/V2V capabilities
""")
with gr.Column():
gr.Markdown("""
#### ๐ฎ Usage Modes
1. **Image-to-Video (I2V):** Single image โ 81-frame video
2. **Multi-Frame:** Start-end frames โ smooth transition
3. **Video-to-Video (V2V):** Completion, extension, editing
4. **Text-to-Video (T2V):** Pure text prompt โ video
""")
gr.HTML("""
<div style="text-align: center; padding: 20px; background: rgba(34, 211, 238, 0.1); border-radius: 15px; margin: 20px 0;">
<h3 style="color: var(--color-primary); margin-bottom: 15px;">
๐ฌ Research Impact
</h3>
<p style="font-size: 1.1em; line-height: 1.6;">
Pusa V1.0 demonstrates that <strong>high-quality video generation doesn't require massive computational resources</strong>.
Our vectorized timestep adaptation approach opens new possibilities for democratizing video AI research and applications.
</p>
</div>
""")
# Information section
with gr.Group():
gr.HTML("""
<div style="text-align: center; padding: 20px; background: rgba(30, 41, 59, 0.6); border-radius: 15px; margin: 20px 0; backdrop-filter: blur(12px);">
<h2 style="background: linear-gradient(135deg, var(--color-primary) 0%, var(--color-secondary) 100%); background-clip: text; -webkit-background-clip: text; -webkit-text-fill-color: transparent; margin-bottom: 15px;">
๐ About Pusa V1.0
</h2>
<p style="font-size: 1.1em; line-height: 1.6; margin-bottom: 20px; color: var(--color-text-light);">
<strong>Pusa V1.0</strong> leverages <span style="color: var(--color-primary);">vectorized timestep adaptation (VTA)</span> for fine-grained temporal control
within a unified video diffusion framework. The model achieves unprecedented efficiency, surpassing Wan-I2V on Vbench-I2V with only <span style="color: var(--color-secondary);">$500 training cost</span> and 4k data.
</p>
</div>
""")
with gr.Row():
with gr.Column():
gr.Markdown("""
### ๐ก Pro Tips for Best Results
๐๏ธ **LoRA Alpha**: Use values between 1-2 for optimal balance between quality and consistency
๐ **Noise Multipliers**: Lower values (0.0-0.3) for faithful conditioning, higher values (0.4-1.0) for more variation
๐ **Conditioning Positions**: Frame 0 is first frame, frame 20 is last frame in the 21-frame latent space
โ๏ธ **Prompts**: Be descriptive and specific for better results
""")
with gr.Column():
gr.Markdown("""
### ๐ Important Links
๐ **[Project Page](https://yaofang-liu.github.io/Pusa_Web/)** - Official project website
๐ **[Technical Report](https://arxiv.org/abs/2507.16116)** - Detailed research paper
๐ค **[Model on HuggingFace](https://huggingface.co/RaphaelLiu/PusaV1)** - Download models
๐ **[Training Dataset](https://huggingface.co/datasets/RaphaelLiu/PusaV1_training)** - Training data
""")
# Footer
gr.HTML("""
<div style="text-align: center; padding: 30px; margin-top: 40px; background: linear-gradient(135deg, rgba(102, 126, 234, 0.1) 0%, rgba(118, 75, 162, 0.1) 100%); border-radius: 15px; border: 1px solid rgba(255, 255, 255, 0.1);">
<p style="font-size: 1.2em; margin-bottom: 10px;">
<strong>โจ Made with โค๏ธ for the AI Community โจ</strong>
</p>
<p style="opacity: 0.8;">
Experience the future of video generation with Pusa V1.0 ๐
</p>
</div>
""")
# Event handlers
generate_i2v_btn.click(
fn=demo_instance.generate_i2v_video,
inputs=[image_input, prompt_i2v, noise_multiplier_i2v,
lora_alpha_i2v, steps_i2v, negative_prompt_i2v],
outputs=[video_output_i2v, status_i2v]
)
generate_multi_btn.click(
fn=demo_instance.generate_multi_frames_video,
inputs=[image1_input, image2_input, image3_input, num_images, prompt_multi, cond_position_multi, noise_multipliers_multi,
lora_alpha_multi, steps_multi, negative_prompt_multi],
outputs=[video_output_multi, status_multi]
)
generate_v2v_btn.click(
fn=demo_instance.generate_v2v_video,
inputs=[video_input, prompt_v2v, cond_position_v2v, noise_multipliers_v2v,
lora_alpha_v2v, steps_v2v, negative_prompt_v2v],
outputs=[video_output_v2v, status_v2v]
)
generate_t2v_btn.click(
fn=demo_instance.generate_t2v_video,
inputs=[prompt_t2v, lora_alpha_t2v, steps_t2v, negative_prompt_t2v],
outputs=[video_output_t2v, status_t2v]
)
return demo
if __name__ == "__main__":
ensure_model_downloaded()
demo = create_demo()
demo.launch(
share=False,
show_error=True
) |