Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,764 Bytes
96257b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
#! /usr/bin/env python
import json
import os
import time
import click
import numpy as np
import torch
from genmo.lib.progress import progress_bar
from genmo.lib.utils import save_video
from genmo.mochi_preview.pipelines_multi_frames_release import (
DecoderModelFactory,
EncoderModelFactory,
DitModelFactory,
MochiMultiGPUPipeline,
MochiSingleGPUPipeline,
T5ModelFactory,
linear_quadratic_schedule,
)
import torch
from torch.utils.data import Dataset, DataLoader
import random
import string
from lightning.pytorch import LightningDataModule
from genmo.mochi_preview.vae.models import Encoder, add_fourier_features
from genmo.mochi_preview.vae.latent_dist import LatentDistribution
import torchvision
from einops import rearrange
from safetensors.torch import load_file
from genmo.mochi_preview.pipelines import DecoderModelFactory, decode_latents_tiled_spatial, decode_latents, decode_latents_tiled_full
from genmo.mochi_preview.vae.vae_stats import dit_latents_to_vae_latents
pipeline = None
model_dir_path = None
num_gpus = torch.cuda.device_count()
cpu_offload = False
dit_path = None
def configure_model(model_dir_path_, dit_path_, cpu_offload_):
global model_dir_path, dit_path, cpu_offload
model_dir_path = model_dir_path_
dit_path = dit_path_
cpu_offload = cpu_offload_
def load_model():
global num_gpus, pipeline, model_dir_path, dit_path
if pipeline is None:
MOCHI_DIR = model_dir_path
print(f"Launching with {num_gpus} GPUs. If you want to force single GPU mode use CUDA_VISIBLE_DEVICES=0.")
klass = MochiSingleGPUPipeline if num_gpus == 1 else MochiMultiGPUPipeline
kwargs = dict(
text_encoder_factory=T5ModelFactory(),
dit_factory=DitModelFactory(
model_path=dit_path,
model_dtype="bf16"
),
decoder_factory=DecoderModelFactory(
model_path=f"{MOCHI_DIR}/decoder.safetensors",
),
encoder_factory=EncoderModelFactory(
model_path=f"{MOCHI_DIR}/encoder.safetensors",
),
)
if num_gpus > 1:
assert not cpu_offload, "CPU offload not supported in multi-GPU mode"
kwargs["world_size"] = num_gpus
else:
kwargs["cpu_offload"] = cpu_offload
# kwargs["decode_type"] = "tiled_full"
kwargs["decode_type"] = "tiled_spatial"
pipeline = klass(**kwargs)
def generate_video(
prompt,
negative_prompt,
width,
height,
num_frames,
seed,
cfg_scale,
num_inference_steps,
data_path,
multi_cond=None,
):
load_model()
global dit_path
# sigma_schedule should be a list of floats of length (num_inference_steps + 1),
# such that sigma_schedule[0] == 1.0 and sigma_schedule[-1] == 0.0 and monotonically decreasing.
sigma_schedule = linear_quadratic_schedule(num_inference_steps, 0.025)
# cfg_schedule should be a list of floats of length num_inference_steps.
# For simplicity, we just use the same cfg scale at all timesteps,
# but more optimal schedules may use varying cfg, e.g:
# [5.0] * (num_inference_steps // 2) + [4.5] * (num_inference_steps // 2)
cfg_schedule = [cfg_scale] * num_inference_steps
args = {
"height": height,
"width": width,
"num_frames": num_frames,
"sigma_schedule": sigma_schedule,
"cfg_schedule": cfg_schedule,
"num_inference_steps": num_inference_steps,
# We *need* flash attention to batch cfg
# and it's only worth doing in a high-memory regime (assume multiple GPUs)
"batch_cfg": False,
"prompt": prompt,
"negative_prompt": negative_prompt,
"seed": seed,
"data_path": data_path,
"condition_image": multi_cond["tensors"],
"condition_frame_idx": multi_cond["positions"],
"noise_multiplier": multi_cond["noise_multipliers"]
}
with progress_bar(type="tqdm"):
final_frames = pipeline(**args)
final_frames = final_frames[0]
assert isinstance(final_frames, np.ndarray)
assert final_frames.dtype == np.float32
# Create a results directory based on model name and timestamp
model_name = os.path.basename(dit_path.split('/')[-2])
checkpoint_name = dit_path.split('/')[-1].split('train_loss')[0]
# Use datetime format for timestamp_dir
from datetime import datetime
timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S")
# Generate descriptive prefix for the result filename
positions_str = multi_cond["positions"]
cond_position = f"multi_{positions_str}"
noise_multiplier = multi_cond["noise_multipliers"]
results_base_dir = "./video_test_demos_results"
results_dir = os.path.join(results_base_dir, f"{model_name}_{checkpoint_name}_github_user_demo_{cond_position}pos_{num_inference_steps}steps_crop_{noise_multiplier}sigma")
os.makedirs(results_dir, exist_ok=True)
output_path = os.path.join(
results_dir,
f"{timestamp_str}.mp4"
)
save_video(final_frames, output_path)
return output_path
from textwrap import dedent
@click.command()
@click.option("--prompt", default=None, type=str, help="Prompt for generation.")
@click.option("--negative_prompt", default="", help="Negative prompt for video generation.")
@click.option("--width", default=848, type=int, help="Width of the video.")
@click.option("--height", default=480, type=int, help="Height of the video.")
@click.option("--num_frames", default=163, type=int, help="Number of frames.")
@click.option("--seed", default=1710977262, type=int, help="Random seed.")
@click.option("--cfg_scale", default=4.5, type=float, help="CFG Scale.")
@click.option("--num_steps", default=64, type=int, help="Number of inference steps.")
@click.option("--model_dir", required=True, help="Path to the model directory.")
@click.option("--dit_path", required=True, help="Path to the dit model directory.")
@click.option("--cpu_offload", is_flag=True, help="Whether to offload model to CPU")
@click.option("--data_path", required=True, default="/home/dyvm6xra/dyvm6xrauser02/data/vidgen1m", help="Path to the data directory.")
@click.option("--multi_cond", default=None, help="JSON string with multiple condition inputs in format: {pos: [img_dir, prompt_dir, noise_mult]}.")
def generate_cli(
prompt, negative_prompt, width, height, num_frames, seed, cfg_scale, num_steps, model_dir,
dit_path, cpu_offload, data_path, multi_cond
):
configure_model(model_dir, dit_path, cpu_offload)
config = dict(
prune_bottlenecks=[False, False, False, False, False],
has_attentions=[False, True, True, True, True],
affine=True,
bias=True,
input_is_conv_1x1=True,
padding_mode="replicate",
)
# Create VAE encoder
encoder = Encoder(
in_channels=15,
base_channels=64,
channel_multipliers=[1, 2, 4, 6],
num_res_blocks=[3, 3, 4, 6, 3],
latent_dim=12,
temporal_reductions=[1, 2, 3],
spatial_reductions=[2, 2, 2],
**config,
)
device = torch.device("cuda:0")
encoder = encoder.to(device, memory_format=torch.channels_last_3d)
encoder.load_state_dict(load_file(f"{model_dir}/encoder.safetensors"))
encoder.eval()
# Process multi-conditional inputs
# Parse JSON input for multiple conditioning
import json
conditions = json.loads(multi_cond)
# Create structures to store tensors, and noise multipliers
latent_tensors = []
noise_multipliers = []
positions = []
# Process each conditioning position
for pos, cond_info in conditions.items():
img_dir, noise_mult = cond_info
pos = int(pos)
positions.append(pos)
# Load image and encode
from PIL import Image
import torchvision.transforms as transforms
# Load the image
image = Image.open(img_dir)
# Crop and resize the image
target_ratio = width / height
current_ratio = image.width / image.height
if current_ratio > target_ratio:
new_width = int(image.height * target_ratio)
x1 = (image.width - new_width) // 2
image = image.crop((x1, 0, x1 + new_width, image.height))
else:
new_height = int(image.width / target_ratio)
y1 = (image.height - new_height) // 2
image = image.crop((0, y1, image.width, y1 + new_height))
# Resize the cropped image
transform = transforms.Compose([
transforms.Resize((height, width)),
transforms.ToTensor(),
])
image_tensor = (transform(image) * 2 - 1).unsqueeze(1).unsqueeze(0)
image_tensor = add_fourier_features(image_tensor.to(device))
# Encode image to latent
with torch.inference_mode():
with torch.autocast("cuda", dtype=torch.bfloat16):
encoder = encoder.to(device)
ldist = encoder(image_tensor)
image_latent = ldist.sample()
# Store the individual latent tensor for this position
latent_tensors.append(image_latent[:, :, 0, :, :])
# Store noise multiplier
noise_multipliers.append(float(noise_mult) if noise_mult else 0.3)
# Clean up to save memory
del ldist, image_tensor
torch.cuda.empty_cache()
# Build multi-condition data structure
multi_cond_data = {
"tensors": latent_tensors, # Dict of position -> tensor
"positions": positions, # Dict of position -> noise multiplier
"noise_multipliers": noise_multipliers, # Dict of position -> noise multiplier
}
prompt = prompt
with torch.inference_mode():
output = generate_video(
prompt,
negative_prompt,
width,
height,
num_frames,
seed,
cfg_scale,
num_steps,
data_path,
multi_cond=multi_cond_data,
)
click.echo(f"Video generated at: {output}")
return
if __name__ == "__main__":
generate_cli()
|