Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,622 Bytes
96257b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
#! /usr/bin/env python
import json
import os
import time
import click
import numpy as np
import torch
from genmo.lib.progress import progress_bar
from genmo.lib.utils import save_video
from genmo.mochi_preview.pipelines_v2v_release import (
DecoderModelFactory,
EncoderModelFactory,
DitModelFactory,
MochiMultiGPUPipeline,
MochiSingleGPUPipeline,
T5ModelFactory,
linear_quadratic_schedule,
)
import torch
from torch.utils.data import Dataset, DataLoader
import random
import string
from lightning.pytorch import LightningDataModule
from genmo.mochi_preview.vae.models import Encoder, add_fourier_features
from genmo.mochi_preview.vae.latent_dist import LatentDistribution
import torchvision
from einops import rearrange
from safetensors.torch import load_file
from genmo.mochi_preview.pipelines import DecoderModelFactory, decode_latents_tiled_spatial, decode_latents, decode_latents_tiled_full
from genmo.mochi_preview.vae.vae_stats import dit_latents_to_vae_latents
pipeline = None
model_dir_path = None
num_gpus = torch.cuda.device_count()
cpu_offload = False
dit_path = None
def configure_model(model_dir_path_, dit_path_, cpu_offload_):
global model_dir_path, dit_path, cpu_offload
model_dir_path = model_dir_path_
dit_path = dit_path_
cpu_offload = cpu_offload_
def load_model():
global num_gpus, pipeline, model_dir_path, dit_path
if pipeline is None:
MOCHI_DIR = model_dir_path
print(f"Launching with {num_gpus} GPUs. If you want to force single GPU mode use CUDA_VISIBLE_DEVICES=0.")
klass = MochiSingleGPUPipeline if num_gpus == 1 else MochiMultiGPUPipeline
kwargs = dict(
text_encoder_factory=T5ModelFactory(),
dit_factory=DitModelFactory(
model_path=dit_path,
model_dtype="bf16"
),
decoder_factory=DecoderModelFactory(
model_path=f"{MOCHI_DIR}/decoder.safetensors",
),
encoder_factory=EncoderModelFactory(
model_path=f"{MOCHI_DIR}/encoder.safetensors",
),
)
if num_gpus > 1:
assert not cpu_offload, "CPU offload not supported in multi-GPU mode"
kwargs["world_size"] = num_gpus
else:
kwargs["cpu_offload"] = cpu_offload
# kwargs["decode_type"] = "tiled_full"
kwargs["decode_type"] = "tiled_spatial"
pipeline = klass(**kwargs)
def generate_video(
prompt,
negative_prompt,
width,
height,
num_frames,
seed,
cfg_scale,
num_inference_steps,
data_path,
input_image=None,
):
load_model()
global dit_path
# sigma_schedule should be a list of floats of length (num_inference_steps + 1),
# such that sigma_schedule[0] == 1.0 and sigma_schedule[-1] == 0.0 and monotonically decreasing.
sigma_schedule = linear_quadratic_schedule(num_inference_steps, 0.025)
# cfg_schedule should be a list of floats of length num_inference_steps.
# For simplicity, we just use the same cfg scale at all timesteps,
# but more optimal schedules may use varying cfg, e.g:
# [5.0] * (num_inference_steps // 2) + [4.5] * (num_inference_steps // 2)
cfg_schedule = [cfg_scale] * num_inference_steps
args = {
"height": height,
"width": width,
"num_frames": num_frames,
"sigma_schedule": sigma_schedule,
"cfg_schedule": cfg_schedule,
"num_inference_steps": num_inference_steps,
# We *need* flash attention to batch cfg
# and it's only worth doing in a high-memory regime (assume multiple GPUs)
"batch_cfg": False,
"prompt": prompt,
"negative_prompt": negative_prompt,
"seed": seed,
"data_path": data_path,
}
# Handle different input types
if input_image is not None:
# if "tensor" in input_image:
# Check if this is an image tensor (for image conditioning) or latent tensor
# if len(input_image["tensor"].shape) == 4: # [B, C, H, W] - image tensor
# This is an image tensor, prepare it for conditioning
# cond_position = input_image.get("cond_position", 0)
args["condition_image"] = input_image["tensor"]
args["condition_frame_idx"] = input_image["cond_position"]
args["noise_multiplier"] = input_image["noise_multiplier"]
# else: # Latent tensor
# args["input_image"] = input_image["tensor"]
# print(args)
with progress_bar(type="tqdm"):
final_frames = pipeline(**args)
final_frames = final_frames[0]
assert isinstance(final_frames, np.ndarray)
assert final_frames.dtype == np.float32
# Create a results directory based on model name and timestamp
model_name = os.path.basename(dit_path.split('/')[-2])
checkpoint_name = dit_path.split('/')[-1].split('train_loss')[0]
# Use datetime format for timestamp_dir
from datetime import datetime
timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S")
cond_position = input_image["cond_position"]
results_base_dir = "./video_test_demos_results"
results_dir = os.path.join(results_base_dir, f"{model_name}_{checkpoint_name}_dawn_{cond_position}pos_{num_inference_steps}steps_0sigma")
os.makedirs(results_dir, exist_ok=True)
# Extract filename from input_image if available
filename_prefix = ""
if isinstance(input_image, dict) and "filename" in input_image:
filename_prefix = f"{os.path.basename(input_image['filename']).split('.')[0]}_"
output_path = os.path.join(
results_dir,
f"{filename_prefix}{timestamp_str}.mp4"
)
save_video(final_frames, output_path)
json_path = os.path.splitext(output_path)[0] + ".json"
# Save args to JSON but remove input_image tensor and convert non-serializable objects
json_args = args.copy()
# Handle input_image for JSON serialization
if "input_image" in json_args:
json_args["input_image"] = None
# Handle condition_image for JSON serialization
if "condition_image" in json_args:
json_args["condition_image"] = "Image tensor (removed for JSON)"
if isinstance(input_image, dict):
json_args["input_filename"] = input_image.get("filename", None)
if "cond_position" in input_image:
json_args["condition_frame_idx"] = input_image["cond_position"]
# Convert sigma_schedule and cfg_schedule from tensors to lists if needed
if isinstance(json_args["sigma_schedule"], torch.Tensor):
json_args["sigma_schedule"] = json_args["sigma_schedule"].tolist()
if isinstance(json_args["cfg_schedule"], torch.Tensor):
json_args["cfg_schedule"] = json_args["cfg_schedule"].tolist()
# Handle prompt if it's a tensor or other non-serializable object
if not isinstance(json_args["prompt"], (str, type(None))):
if hasattr(json_args["prompt"], "tolist"):
json_args["prompt"] = "Tensor prompt (converted to string for JSON)"
else:
json_args["prompt"] = str(json_args["prompt"])
# Handle negative_prompt if it's a tensor
if not isinstance(json_args["negative_prompt"], (str, type(None))):
if hasattr(json_args["negative_prompt"], "tolist"):
json_args["negative_prompt"] = "Tensor negative prompt (converted to string for JSON)"
else:
json_args["negative_prompt"] = str(json_args["negative_prompt"])
json.dump(json_args, open(json_path, "w"), indent=4)
return output_path
from textwrap import dedent
@click.command()
@click.option("--prompt", default="A man is playing the basketball", help="Prompt for video generation.")
@click.option("--negative_prompt", default="", help="Negative prompt for video generation.")
@click.option("--width", default=848, type=int, help="Width of the video.")
@click.option("--height", default=480, type=int, help="Height of the video.")
@click.option("--num_frames", default=163, type=int, help="Number of frames.")
@click.option("--seed", default=1710977262, type=int, help="Random seed.")
@click.option("--cfg_scale", default=4.5, type=float, help="CFG Scale.")
@click.option("--num_steps", default=64, type=int, help="Number of inference steps.")
@click.option("--model_dir", required=True, help="Path to the model directory.")
@click.option("--dit_path", required=True, help="Path to the dit model directory.")
@click.option("--cpu_offload", is_flag=True, help="Whether to offload model to CPU")
@click.option("--data_path", required=True, default="/home/dyvm6xra/dyvm6xrauser02/data/vidgen1m", help="Path to the data directory.")
@click.option("--video_start_dir", default=None, help="Path to the start conditioning video.")
@click.option("--video_end_dir", default=None, help="Path to the end conditioning video.")
@click.option("--prompt_dir", default=None, help="Path to directory containing prompt text files.")
@click.option("--cond_position_start", default="[0,1,2]", type=str, help="Frame positions list to place the start conditioning video, position from 0 to 27.")
@click.option("--cond_position_end", default="[-3,-2,-1]", type=str, help="Frame positions list to place the end conditioning video, position from 0 to 27.")
@click.option("--noise_multiplier", default="[0.1,0.3,0.3,0.3,0.3,0.3]", type=str, help="Noise multiplier for noise on the conditioning positions, length must match len(cond_position_start) + len(cond_position_end).")
def generate_cli(
prompt, negative_prompt, width, height, num_frames, seed, cfg_scale, num_steps, model_dir,
dit_path, cpu_offload, data_path, video_start_dir, video_end_dir, prompt_dir, cond_position_start, cond_position_end, noise_multiplier
):
configure_model(model_dir, dit_path, cpu_offload)
config = dict(
prune_bottlenecks=[False, False, False, False, False],
has_attentions=[False, True, True, True, True],
affine=True,
bias=True,
input_is_conv_1x1=True,
padding_mode="replicate",
)
# Create VAE encoder
encoder = Encoder(
in_channels=15,
base_channels=64,
channel_multipliers=[1, 2, 4, 6],
num_res_blocks=[3, 3, 4, 6, 3],
latent_dim=12,
temporal_reductions=[1, 2, 3],
spatial_reductions=[2, 2, 2],
**config,
)
device = torch.device("cuda:0")
encoder = encoder.to(device, memory_format=torch.channels_last_3d)
encoder.load_state_dict(load_file(f"{model_dir}/encoder.safetensors"))
encoder.eval()
# Import required libraries
import cv2
import torchvision.transforms as transforms
from PIL import Image
def process_video(video_path, width, height):
"""Process a video file and return a tensor of normalized frames"""
if not os.path.isfile(video_path):
click.echo(f"Video file not found: {video_path}")
return None
click.echo(f"Processing video: {video_path}")
cap = cv2.VideoCapture(video_path)
frames = []
# Read frames from video
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Convert BGR to RGB
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame)
cap.release()
if not frames:
click.echo(f"Error: Could not read frames from video {video_path}")
return None
print(f"Loaded {len(frames)} frames from video {os.path.basename(video_path)}")
# Process frames - crop and resize
processed_frames = []
transform = transforms.Compose([
transforms.ToTensor(),
])
target_ratio = width / height
for frame in frames:
# Convert to PIL for easier processing
pil_frame = Image.fromarray(frame)
# Calculate crop dimensions to maintain aspect ratio
current_ratio = pil_frame.width / pil_frame.height
if current_ratio > target_ratio:
# Frame is wider than target ratio - crop width
new_width = int(pil_frame.height * target_ratio)
x1 = (pil_frame.width - new_width) // 2
pil_frame = pil_frame.crop((x1, 0, x1 + new_width, pil_frame.height))
else:
# Frame is taller than target ratio - crop height
new_height = int(pil_frame.width / target_ratio)
y1 = (pil_frame.height - new_height) // 2
pil_frame = pil_frame.crop((0, y1, pil_frame.width, y1 + new_height))
# Resize the cropped frame
pil_frame = pil_frame.resize((width, height), Image.LANCZOS)
# Convert to tensor
frame_tensor = transform(pil_frame)
processed_frames.append(frame_tensor)
# Stack frames into a single tensor [T, C, H, W]
video_tensor = torch.stack(processed_frames)
# Normalize to [-1, 1]
video_tensor = video_tensor * 2 - 1
# Add batch dimension [1, T, C, H, W]
video_tensor = video_tensor.unsqueeze(0)
return video_tensor, os.path.basename(video_path)
# Process start and end videos if provided
start_tensor = None
end_tensor = None
filename_parts = []
if video_start_dir and os.path.isfile(video_start_dir):
start_result = process_video(video_start_dir, width, height)
if start_result:
start_tensor, start_filename = start_result
filename_parts.append(os.path.splitext(start_filename)[0])
if video_end_dir and os.path.isfile(video_end_dir):
end_result = process_video(video_end_dir, width, height)
if end_result:
end_tensor, end_filename = end_result
filename_parts.append(os.path.splitext(end_filename)[0])
# Concatenate tensors if both are available
if start_tensor is not None and end_tensor is not None:
# Ensure both tensors have the same number of frames
min_frames = min(start_tensor.shape[1], end_tensor.shape[1], 82)
start_tensor = start_tensor[:, :min_frames]
print(f"Start video tensor shape: {start_tensor.shape}")
# import ipdb;ipdb.set_trace()
end_tensor = end_tensor[:, :min_frames-1]
print(f"End video tensor shape: {end_tensor.shape}")
# Rearrange tensors to [B, C, T, H, W] format for temporal concatenation
start_tensor_rearranged = start_tensor.permute(0, 2, 1, 3, 4) # [1, 3, 82, 480, 848]
end_tensor_rearranged = end_tensor.permute(0, 2, 1, 3, 4) # [1, 3, 81, 480, 848]
# Concatenate along dimension 2 (temporal dimension in the rearranged format)
combined_tensor = torch.cat([start_tensor_rearranged, end_tensor_rearranged], dim=2)
print(f"Combined tensor shape after temporal concatenation: {combined_tensor.shape}")
# Add Fourier features and encode to latent
combined_tensor = add_fourier_features(combined_tensor.to(device))
with torch.inference_mode():
with torch.autocast("cuda", dtype=torch.bfloat16):
t0 = time.time()
encoder = encoder.to(device)
ldist = encoder(combined_tensor)
image_tensor = ldist.sample()
print(f"Encoding took {time.time() - t0:.2f} seconds")
# Move encoder to CPU to free GPU memory
torch.cuda.empty_cache()
encoder = encoder.to("cpu")
del ldist
# Create combined filename
combined_filename = "_and_".join(filename_parts)
# Parse string representations of position lists to actual lists
cond_position_start_list = eval(cond_position_start)
cond_position_end_list = eval(cond_position_end)
cond_position = cond_position_start_list + cond_position_end_list
# Package input for generate_video
input_image = {
"tensor": image_tensor,
"filename": combined_filename,
"cond_position": cond_position,
"noise_multiplier": noise_multiplier
}
with torch.inference_mode():
output = generate_video(
prompt,
negative_prompt,
width,
height,
num_frames,
seed,
cfg_scale,
num_steps,
data_path,
input_image,
)
click.echo(f"Video generated at: {output}")
return
if __name__ == "__main__":
generate_cli()
|