File size: 12,735 Bytes
96257b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import os
import random
import torch
from torch.utils.data import Dataset, DataLoader
from typing import List, Dict, Any, Optional, Tuple
import multiprocessing
import tqdm

class LatentDistribution:
    """Class to handle latent distributions with mean and logvar."""
    def __init__(self, mean, logvar):
        self.mean = mean
        self.logvar = logvar
        
    def sample(self):
        """Sample from the latent distribution using reparameterization trick."""
        std = torch.exp(0.5 * self.logvar)
        eps = torch.randn_like(std)
        return self.mean + eps * std

class VideoEmbeddingDataset(Dataset):
    """Dataset for loading video latents and caption embeddings."""
    
    def __init__(
        self, 
        data_dir: str,
        caption_dir: Optional[str] = None,
        file_extension: str = ".latent.pt",
        caption_extension: str = ".embed.pt",
        device: str = "cpu",
        use_bfloat16: bool = False,
    ):
        """
        Initialize the dataset.
        
        Args:
            data_dir: Directory containing video latent files
            caption_dir: Directory containing caption embedding files. If None, will be derived from data_dir
            file_extension: Extension of latent files
            caption_extension: Extension of caption embedding files
            device: Device to load tensors to
            use_bfloat16: Whether to convert tensors to bfloat16
        """
        self.data_dir = data_dir
        self.caption_dir = caption_dir or os.path.join(os.path.dirname(data_dir), "captions")
        self.file_extension = file_extension
        self.caption_extension = caption_extension
        self.device = device
        self.use_bfloat16 = use_bfloat16
        
        # Get all latent files
        self.file_paths = []
        for root, _, files in os.walk(data_dir):
            for file in files:
                if file.endswith(file_extension):
                    self.file_paths.append(os.path.join(root, file))
        
        print(f"Found {len(self.file_paths)} video latent files in {data_dir}")
    
    def __len__(self) -> int:
        return len(self.file_paths)
    
    def __getitem__(self, idx: int) -> Dict[str, torch.Tensor]:
        # Load video latent
        file_path = self.file_paths[idx]
        latent_dict = torch.load(file_path, map_location="cpu")
        
        # Create latent distribution from mean and logvar
        ldist = LatentDistribution(latent_dict["mean"], latent_dict["logvar"])
        # Sample from the distribution
        z_0 = ldist.sample()
        
        # Derive and load corresponding caption embedding
        rel_path = os.path.relpath(file_path, self.data_dir)
        caption_path = os.path.join(self.caption_dir, rel_path).replace(self.file_extension, self.caption_extension)
        caption_dict = torch.load(caption_path, map_location="cpu")
        # print("caption_path", caption_path,"\nfile_path", file_path)
        
        # Extract caption features and mask (assuming batch size 1 in the saved embeddings)
        y_feat = caption_dict["y_feat"][0]
        y_mask = caption_dict["y_mask"][0]

        
        return {
            "z_0": z_0,
            "y_feat": y_feat,
            "y_mask": y_mask,
        }

    def collate_fn(self, batch: List[Dict[str, torch.Tensor]]) -> Dict[str, torch.Tensor]:
        """
        Custom collate function to handle batching of samples.
        
        Args:
            batch: List of samples from __getitem__
            
        Returns:
            Dictionary with batched tensors
        """
        z_0 = torch.cat([item["z_0"] for item in batch], dim=0)
        y_feat = torch.cat([item["y_feat"] for item in batch], dim=0)
        y_mask = torch.cat([item["y_mask"] for item in batch], dim=0)
        
        # We'll handle device placement and dtype conversion in the main process
        # after pin_memory if needed, not here in the collate function
        
        return {
            "z_0": z_0,
            "y_feat": y_feat,
            "y_mask": y_mask,
        }

def get_video_embedding_dataloader(
    data_dir: str,
    batch_size: int = 32,
    num_workers: int = 4,
    device: str = "cuda",
    use_bfloat16: bool = True,
    shuffle: bool = True,
) -> DataLoader:
    """
    Create a DataLoader for video embeddings.
    
    Args:
        data_dir: Directory containing video latent files
        batch_size: Batch size for the dataloader
        num_workers: Number of workers for the dataloader
        device: Device to load tensors to
        use_bfloat16: Whether to convert tensors to bfloat16
        shuffle: Whether to shuffle the dataset
        
    Returns:
        DataLoader for video embeddings
    """
    dataset = VideoEmbeddingDataset(
        data_dir=data_dir,
        device="cpu",  # Always load to CPU first
        use_bfloat16=False,  # Don't convert to bfloat16 in the dataset
    )
    
    # When using CUDA with multiprocessing, we need to be careful about device placement
    use_cuda = device.startswith("cuda")
    
    return DataLoader(
        dataset,
        batch_size=batch_size,
        shuffle=shuffle,
        num_workers=num_workers if not use_cuda else 0,  # Use 0 workers with CUDA for testing
        collate_fn=dataset.collate_fn,
        pin_memory=use_cuda,  # Use pin_memory when using CUDA
    )

if __name__ == "__main__":
    # Example usage and testing
    import argparse
    import multiprocessing
    import tqdm
    
    # Set multiprocessing start method to 'spawn' to avoid CUDA initialization issues
    if torch.cuda.is_available():
        multiprocessing.set_start_method('spawn', force=True)
    
    parser = argparse.ArgumentParser(description="Test VideoEmbeddingDataset")
    parser.add_argument("--data_dir", type=str, 
                        default="",
                        help="Directory containing video latent files")
    parser.add_argument("--batch_size", type=int, default=20, help="Batch size")
    parser.add_argument("--num_workers", type=int, default=4, help="Number of workers")
    parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", 
                        help="Device to load tensors to")
    parser.add_argument("--test_all", action="store_true", help="Test all dataset items for integrity")
    args = parser.parse_args()
    
    print(f"Testing VideoEmbeddingDataset with data from {args.data_dir}")
    
    # Create dataset and dataloader
    dataloader = get_video_embedding_dataloader(
        data_dir=args.data_dir,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        device=args.device,
        use_bfloat16=True,
    )
    
    # Get a batch of data
    print(f"Fetching a batch from dataloader...")
    batch = next(iter(dataloader))
    
    # Move to device and convert to bfloat16 if needed
    device = torch.device(args.device)
    use_bfloat16 = True
    
    if use_bfloat16 and device.type == "cuda":
        with torch.amp.autocast('cuda', dtype=torch.bfloat16):
            batch["z_0"] = batch["z_0"].to(device)
            batch["y_feat"] = batch["y_feat"].to(device)
            batch["y_mask"] = batch["y_mask"].to(device)
    else:
        batch["z_0"] = batch["z_0"].to(device)
        batch["y_feat"] = batch["y_feat"].to(device)
        batch["y_mask"] = batch["y_mask"].to(device)
    
    # Add conditioning dictionary
    batch["conditioning"] = {
        "cond": {
            "y_feat": [batch["y_feat"]],
            "y_mask": [batch["y_mask"]]
        }
    }
    
    # Print batch information
    print(f"Batch keys: {batch.keys()}")
    print(f"z_0 shape: {batch['z_0'].shape}, dtype: {batch['z_0'].dtype}")
    print(f"y_feat shape: {batch['y_feat'].shape}, dtype: {batch['y_feat'].dtype}")
    print(f"y_mask shape: {batch['y_mask'].shape}, dtype: {batch['y_mask'].dtype}")
    print(f"conditioning keys: {batch['conditioning'].keys()}")
    print(f"conditioning['cond'] keys: {batch['conditioning']['cond'].keys()}")
    
    # Test all dataset items if requested
    if args.test_all:
        # Create dataset
        dataset = VideoEmbeddingDataset(
            data_dir=args.data_dir,
            device="cpu",  # Use CPU for initial file checking
        )
        
        if len(dataset) == 0:
            print("Dataset is empty!")
            exit(0)
            
        print(f"\nTesting all {len(dataset)} dataset items for integrity...")
        broken_items = []
        missing_captions = []
        
        # First check for missing caption files (faster than loading batches)
        print("Checking for missing caption files...")
        for idx in tqdm.tqdm(range(len(dataset))):
            file_path = dataset.file_paths[idx]
            caption_path = file_path.replace("videos_prepared", "captions").replace(
                dataset.file_extension, dataset.caption_extension)
            
            # Check if caption file exists
            if not os.path.exists(caption_path):
                missing_captions.append((idx, file_path, caption_path))
        
        # Now test loading in batches
        print("Testing data loading in batches...")
        # Create a dataloader with the specified batch size
        test_dataloader = torch.utils.data.DataLoader(
            dataset,
            batch_size=args.batch_size,
            shuffle=False,
            num_workers=args.num_workers,
            drop_last=False,
        )
        
        for batch_idx, batch_indices in enumerate(range(0, len(dataset), args.batch_size)):
            batch_end = min(batch_indices + args.batch_size, len(dataset))
            indices = list(range(batch_indices, batch_end))
            
            try:
                # Try to load the batch
                batch = next(iter(torch.utils.data.DataLoader(
                    torch.utils.data.Subset(dataset, indices),
                    batch_size=len(indices),
                    shuffle=False,
                    num_workers=0  # Use single process for error tracking
                )))
                
                # Check for NaN values in the batch
                if torch.isnan(batch["z_0"]).any() or torch.isnan(batch["y_feat"]).any():
                    # If NaNs found, check individual samples to identify which ones are problematic
                    for i, idx in enumerate(indices):
                        if (torch.isnan(batch["z_0"][i]).any() or 
                            torch.isnan(batch["y_feat"][i]).any()):
                            broken_items.append((idx, dataset.file_paths[idx], "Contains NaN values"))
                
            except Exception as e:
                # If batch loading fails, try individual items to identify which ones are problematic
                for idx in indices:
                    try:
                        file_path = dataset.file_paths[idx]
                        item = dataset[idx]
                        # Verify tensor shapes and types
                        if not all(k in item for k in ["z_0", "y_feat", "y_mask"]):
                            broken_items.append((idx, file_path, "Missing keys"))
                        elif torch.isnan(item["z_0"]).any() or torch.isnan(item["y_feat"]).any():
                            broken_items.append((idx, file_path, "Contains NaN values"))
                    except Exception as item_e:
                        broken_items.append((idx, dataset.file_paths[idx], str(item_e)))
            
            # Print progress every 10 batches
            if (batch_idx + 1) % 10 == 0:
                print(f"Processed {batch_end}/{len(dataset)} items. "
                      f"Found {len(broken_items)} broken items, {len(missing_captions)} missing captions.")
        
        # Report results
        print(f"\nIntegrity test completed.")
        print(f"Found {len(broken_items)} broken items.")
        print(f"Found {len(missing_captions)} items with missing caption files.")
        
        if broken_items:
            print("\nBroken items:")
            for idx, path, reason in broken_items[:20]:  # Show first 20
                print(f"  {idx}: {path} - {reason}")
            if len(broken_items) > 20:
                print(f"  ... and {len(broken_items) - 20} more")
                
        if missing_captions:
            print("\nMissing caption files:")
            for idx, video_path, caption_path in missing_captions[:20]:  # Show first 20
                print(f"  {idx}: Missing {caption_path}")
            if len(missing_captions) > 20:
                print(f"  ... and {len(missing_captions) - 20} more")
    
    print("\nTest completed successfully!")