Spaces:
Paused
Paused
File size: 27,565 Bytes
96257b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 |
import os
from typing import Dict, List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from torch.nn.attention import sdpa_kernel
# import genmo.mochi_preview.dit.joint_model.context_parallel as cp
from genmo.mochi_preview.dit.joint_model.layers import (
FeedForward,
PatchEmbed,
RMSNorm,
TimestepEmbedder,
)
from genmo.mochi_preview.dit.joint_model.mod_rmsnorm import modulated_rmsnorm
from genmo.mochi_preview.dit.joint_model.residual_tanh_gated_rmsnorm import (
residual_tanh_gated_rmsnorm,
)
from genmo.mochi_preview.dit.joint_model.rope_mixed import (
compute_mixed_rotation,
create_position_matrix,
)
from genmo.mochi_preview.dit.joint_model.temporal_rope import apply_rotary_emb_qk_real
from genmo.mochi_preview.dit.joint_model.utils import (
AttentionPool,
modulate,
pad_and_split_xy,
unify_streams,
)
import ipdb
COMPILE_FINAL_LAYER = os.environ.get("COMPILE_DIT") == "1"
COMPILE_MMDIT_BLOCK = os.environ.get("COMPILE_DIT") == "1"
from genmo.lib.attn_imports import comfy_attn, flash_varlen_qkvpacked_attn, sage_attn, sdpa_attn_ctx
def all_to_all_collect_heads(x: torch.Tensor) -> torch.Tensor:
# Make tensor contiguous before view
return x.contiguous().view(x.size(0), x.size(1), x.size(2) * x.size(3))
def all_to_all_collect_tokens(x: torch.Tensor, num_heads: int) -> torch.Tensor:
# Move QKV dimension to the front.
# B M (3 H d) -> 3 B M H d
B, M, _ = x.size()
x = x.contiguous().view(B, M, 3, num_heads, -1)
return x.permute(2, 0, 1, 3, 4).contiguous()
# TODO Only linear, initialize the FrameMixer module to act as an identity function
class FrameMixer(nn.Module):
def __init__(self, F, num_layers=2, expansion=4, bias=True, device=None):
super().__init__()
self.layers = nn.ModuleList()
for _ in range(num_layers):
# Create sequential layers
seq = nn.Sequential(
nn.Linear(F, F * expansion, bias=bias, device=device),
nn.Linear(F * expansion, F, bias=bias, device=device)
)
# Initialize weights to compose to identity
with torch.no_grad():
# First layer: expand
layer0 = seq[0]
layer0.weight.zero_()
for k in range(F * expansion):
i = k // expansion
layer0.weight[k, i] = 1.0 / (expansion ** 0.5)
if layer0.bias is not None:
layer0.bias.zero_()
# Second layer: compress
layer1 = seq[1]
layer1.weight.zero_()
for j in range(F):
start = j * expansion
end = start + expansion
layer1.weight[j, start:end] = 1.0 / (expansion ** 0.5)
if layer1.bias is not None:
layer1.bias.zero_()
self.layers.append(seq)
# self.norm = nn.LayerNorm(F) # Optional
def forward(self, x):
for layer in self.layers:
x = layer(x) # Residual connection can be added here if needed
return x
class AsymmetricAttention(nn.Module):
def __init__(
self,
dim_x: int,
dim_y: int,
num_heads: int = 8,
qkv_bias: bool = True,
qk_norm: bool = False,
update_y: bool = True,
out_bias: bool = True,
attention_mode: str = "flash",
softmax_scale: Optional[float] = None,
device: Optional[torch.device] = None,
):
super().__init__()
self.attention_mode = attention_mode
self.dim_x = dim_x
self.dim_y = dim_y
self.num_heads = num_heads
self.head_dim = dim_x // num_heads
self.update_y = update_y
self.softmax_scale = softmax_scale
if dim_x % num_heads != 0:
raise ValueError(f"dim_x={dim_x} should be divisible by num_heads={num_heads}")
# Input layers.
self.qkv_bias = qkv_bias
self.qkv_x = nn.Linear(dim_x, 3 * dim_x, bias=qkv_bias, device=device)
self.qkv_y = nn.Linear(dim_y, 3 * dim_x, bias=qkv_bias, device=device)
# Query and key normalization for stability.
assert qk_norm
self.q_norm_x = RMSNorm(self.head_dim, device=device)
self.k_norm_x = RMSNorm(self.head_dim, device=device)
self.q_norm_y = RMSNorm(self.head_dim, device=device)
self.k_norm_y = RMSNorm(self.head_dim, device=device)
# Output layers. y features go back down from dim_x -> dim_y.
self.proj_x = nn.Linear(dim_x, dim_x, bias=out_bias, device=device)
self.proj_y = nn.Linear(dim_x, dim_y, bias=out_bias, device=device) if update_y else nn.Identity()
def run_qkv_y(self, y):
# cp_rank, cp_size = cp.get_cp_rank_size()
local_heads = self.num_heads
qkv_y = self.qkv_y(y) # (B, L, 3 * dim)
qkv_y = qkv_y.contiguous().view(qkv_y.size(0), qkv_y.size(1), 3, local_heads, self.head_dim)
q_y, k_y, v_y = qkv_y.unbind(2)
return q_y, k_y, v_y
def prepare_qkv(
self,
x: torch.Tensor, # (B, N, dim_x)
y: torch.Tensor, # (B, L, dim_y)
*,
scale_x: torch.Tensor,
scale_y: torch.Tensor,
rope_cos: torch.Tensor,
rope_sin: torch.Tensor,
valid_token_indices: torch.Tensor,
video_shape: tuple, # (B, T, pH, pW, D) TODO
):
# # Pre-norm for visual features
# x = modulated_rmsnorm(x, scale_x) # (B, M, dim_x) where M = N / cp_group_size
# TODO Reshape for FrameMixer using provided dimensions
B, T, pH, pW, D = video_shape
# TODO Pre-norm for visual features
x = modulated_rmsnorm(x, scale_x) # (B, M, dim_x) where M = N / cp_group_size
# ipdb.set_trace()
# Process visual features
qkv_x = self.qkv_x(x) # (B, M, 3 * dim_x)
# ipdb.set_trace()
assert qkv_x.dtype == torch.bfloat16
qkv_x = all_to_all_collect_tokens(qkv_x, self.num_heads) # (3, B, N, local_h, head_dim)
# ipdb.set_trace()
# Process text features
y = modulated_rmsnorm(y, scale_y) # (B, L, dim_y)
q_y, k_y, v_y = self.run_qkv_y(y) # (B, L, local_heads, head_dim)
q_y = self.q_norm_y(q_y)
k_y = self.k_norm_y(k_y)
# ipdb.set_trace()
# Split qkv_x into q, k, v
q_x, k_x, v_x = qkv_x.unbind(0) # (B, N, local_h, head_dim)
q_x = self.q_norm_x(q_x) #TODO 这里面有torch.empty操作有问题会导致nan
q_x = apply_rotary_emb_qk_real(q_x, rope_cos, rope_sin)
k_x = self.k_norm_x(k_x)
k_x = apply_rotary_emb_qk_real(k_x, rope_cos, rope_sin)
# ipdb.set_trace()
# Unite streams
qkv = unify_streams(
q_x,
k_x,
v_x,
q_y,
k_y,
v_y,
valid_token_indices,
)
# ipdb.set_trace()
return qkv
def flash_attention(self, qkv, cu_seqlens, max_seqlen_in_batch, total, local_dim):
# ipdb.set_trace()
with torch.autocast("cuda", enabled=False):
out: torch.Tensor = flash_varlen_qkvpacked_attn(
qkv,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen_in_batch,
dropout_p=0.0,
softmax_scale=self.softmax_scale,
) # (total, local_heads, head_dim)
return out.contiguous().view(total, local_dim)
def sdpa_attention(self, qkv):
q, k, v = rearrange(qkv, "(b s) t h d -> t b h s d", b=1)
with torch.autocast("cuda", enabled=False):
with sdpa_attn_ctx():
out = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
return rearrange(out, "b h s d -> s (b h d)")
def sage_attention(self, qkv):
q, k, v = rearrange(qkv, "(b s) t h d -> t b h s d", b=1)
with torch.autocast("cuda", enabled=False):
out = sage_attn(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
return rearrange(out, "b h s d -> s (b h d)")
def comfy_attention(self, qkv):
q, k, v = rearrange(qkv, "(b s) t h d -> t b h s d", b=1)
with torch.autocast("cuda", enabled=False):
out = comfy_attn(q, k, v, heads=self.num_heads, skip_reshape=True)
return out.squeeze(0)
# @torch.compiler.disable()
def run_attention(
self,
qkv: torch.Tensor, # (total <= B * (N + L), 3, local_heads, head_dim)
*,
B: int,
L: int,
M: int,
cu_seqlens: torch.Tensor,
max_seqlen_in_batch: int,
valid_token_indices: torch.Tensor,
):
# _, cp_size = cp.get_cp_rank_size()
N = M
# assert self.num_heads % cp_size == 0
local_heads = self.num_heads
local_dim = local_heads * self.head_dim
total = qkv.size(0)
if self.attention_mode != "flash":
assert B == 1, f"Non-flash attention only supports batch size 1, got {B}"
# ipdb.set_trace()
if self.attention_mode == "flash":
out = self.flash_attention(qkv, cu_seqlens, max_seqlen_in_batch, total, local_dim)
elif self.attention_mode == "sdpa":
out = self.sdpa_attention(qkv)
elif self.attention_mode == "sage":
out = self.sage_attention(qkv)
elif self.attention_mode == "comfy":
out = self.comfy_attention(qkv)
# ipdb.set_trace()
x, y = pad_and_split_xy(out, valid_token_indices, B, N, L, qkv.dtype)
assert x.size() == (B, N, local_dim)
assert y.size() == (B, L, local_dim)
# ipdb.set_trace()
x = x.contiguous().view(B, N, local_heads, self.head_dim)
x = all_to_all_collect_heads(x) # (B, M, dim_x = num_heads * head_dim)
x = self.proj_x(x) # (B, M, dim_x)
# ipdb.set_trace()
# if cp.is_cp_active():
# y = cp.all_gather(y) # (cp_size * B, L, local_heads * head_dim)
# y = rearrange(y, "(G B) L D -> B L (G D)", G=cp_size, D=local_dim) # (B, L, dim_x)
y = self.proj_y(y) # (B, L, dim_y)
# ipdb.set_trace()
return x, y
def forward(
self,
x: torch.Tensor, # (B, N, dim_x)
y: torch.Tensor, # (B, L, dim_y)
*,
scale_x: torch.Tensor, # (B, dim_x), modulation for pre-RMSNorm.
scale_y: torch.Tensor, # (B, dim_y), modulation for pre-RMSNorm.
packed_indices: Dict[str, torch.Tensor] = None,
video_shape: tuple, # (B, T, pH, pW, D) TODO
**rope_rotation,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Forward pass of asymmetric multi-modal attention.
Args:
x: (B, N, dim_x) tensor for visual tokens
y: (B, L, dim_y) tensor of text token features
packed_indices: Dict with keys for Flash Attention
num_frames: Number of frames in the video. N = num_frames * num_spatial_tokens
Returns:
x: (B, N, dim_x) tensor of visual tokens after multi-modal attention
y: (B, L, dim_y) tensor of text token features after multi-modal attention
"""
B, L, _ = y.shape
_, M, _ = x.shape
# Predict a packed QKV tensor from visual and text features.
# Don't checkpoint the all_to_all.
# ipdb.set_trace()
qkv = self.prepare_qkv(
x=x,
y=y,
scale_x=scale_x,
scale_y=scale_y,
rope_cos=rope_rotation.get("rope_cos"),
rope_sin=rope_rotation.get("rope_sin"),
valid_token_indices=packed_indices["valid_token_indices_kv"],
video_shape = video_shape # TODO
) # (total <= B * (N + L), 3, local_heads, head_dim)
# ipdb.set_trace()
x, y = self.run_attention(
qkv,
B=B,
L=L,
M=M,
cu_seqlens=packed_indices["cu_seqlens_kv"],
max_seqlen_in_batch=packed_indices["max_seqlen_in_batch_kv"],
valid_token_indices=packed_indices["valid_token_indices_kv"],
)
return x, y
# @torch.compile(disable=not COMPILE_MMDIT_BLOCK)
class AsymmetricJointBlock(nn.Module):
def __init__(
self,
hidden_size_x: int,
hidden_size_y: int,
num_heads: int,
*,
mlp_ratio_x: float = 8.0, # Ratio of hidden size to d_model for MLP for visual tokens.
mlp_ratio_y: float = 4.0, # Ratio of hidden size to d_model for MLP for text tokens.
update_y: bool = True, # Whether to update text tokens in this block.
device: Optional[torch.device] = None,
**block_kwargs,
):
super().__init__()
self.update_y = update_y
self.hidden_size_x = hidden_size_x
self.hidden_size_y = hidden_size_y
self.mod_x = nn.Linear(hidden_size_x, 4 * hidden_size_x, device=device)
if self.update_y:
self.mod_y = nn.Linear(hidden_size_x, 4 * hidden_size_y, device=device)
else:
self.mod_y = nn.Linear(hidden_size_x, hidden_size_y, device=device)
# Self-attention:
self.attn = AsymmetricAttention(
hidden_size_x,
hidden_size_y,
num_heads=num_heads,
update_y=update_y,
device=device,
**block_kwargs,
)
# MLP.
mlp_hidden_dim_x = int(hidden_size_x * mlp_ratio_x)
assert mlp_hidden_dim_x == int(1536 * 8)
self.mlp_x = FeedForward(
in_features=hidden_size_x,
hidden_size=mlp_hidden_dim_x,
multiple_of=256,
ffn_dim_multiplier=None,
device=device,
)
# MLP for text not needed in last block.
if self.update_y:
mlp_hidden_dim_y = int(hidden_size_y * mlp_ratio_y)
self.mlp_y = FeedForward(
in_features=hidden_size_y,
hidden_size=mlp_hidden_dim_y,
multiple_of=256,
ffn_dim_multiplier=None,
device=device,
)
def forward(
self,
x: torch.Tensor,
c: torch.Tensor,
y: torch.Tensor,
**attn_kwargs,
):
"""Forward pass of a block.
Args:
x: (B, N, dim) tensor of visual tokens
c: (B, dim) tensor of conditioned features
y: (B, L, dim) tensor of text tokens
num_frames: Number of frames in the video. N = num_frames * num_spatial_tokens
Returns:
x: (B, N, dim) tensor of visual tokens after block
y: (B, L, dim) tensor of text tokens after block
"""
N = x.size(1)
B, T, pH, pW, D = c.shape
# adapt shape of c to c_x TODO
c_x = rearrange(c, "B T pH pW D -> B (T pH pW) D")
c_x = F.silu(c_x)
mod_x = self.mod_x(c_x)
scale_msa_x, gate_msa_x, scale_mlp_x, gate_mlp_x = mod_x.chunk(4, dim=2)
""" should modify c if use c shape of (B T dim_x) or (B, T*H*W, dim_x) to average on Temporal dimension, text do not have frame dependences
can't modify y's shape, should keep (B, L, dim_y), L is 256, because in attention
it's direect concatenation after map the dim_y to dim_x by a linear layer
i.e., q = torch.cat([q_x, q_y], dim=1), k = torch.cat([k_x, k_y], dim=1), v = torch.cat([v_x, v_y], dim=1)"""
# adapt shape of c to c_y TODO
c_y = torch.mean(c[:,:,0,0], 1, True)
c_y = F.silu(c_y)
mod_y = self.mod_y(c_y)
# c = F.silu(c)
# mod_x = self.mod_x(c)
# scale_msa_x, gate_msa_x, scale_mlp_x, gate_mlp_x = mod_x.chunk(4, dim=1)
# mod_y = self.mod_y(c)
# if self.update_y:
# scale_msa_y, gate_msa_y, scale_mlp_y, gate_mlp_y = mod_y.chunk(4, dim=1)
# else:
# scale_msa_y = mod_y
# ipdb.set_trace()
if self.update_y:
scale_msa_y, gate_msa_y, scale_mlp_y, gate_mlp_y = mod_y.chunk(4, dim=2) # TODO
else:
scale_msa_y = mod_y
# ipdb.set_trace()
# Self-attention block.
x_attn, y_attn = self.attn(
x,
y,
scale_x=scale_msa_x,
scale_y=scale_msa_y,
video_shape = (B,T,pH,pW,D), # TODO
**attn_kwargs,
)
# ipdb.set_trace()
assert x_attn.size(1) == N
x = residual_tanh_gated_rmsnorm(x, x_attn, gate_msa_x)
if self.update_y:
y = residual_tanh_gated_rmsnorm(y, y_attn, gate_msa_y)
# ipdb.set_trace()
# MLP block.
x = self.ff_block_x(x, scale_mlp_x, gate_mlp_x)
if self.update_y:
y = self.ff_block_y(y, scale_mlp_y, gate_mlp_y)
# ipdb.set_trace()
return x, y
def ff_block_x(self, x, scale_x, gate_x):
x_mod = modulated_rmsnorm(x, scale_x)
x_res = self.mlp_x(x_mod)
x = residual_tanh_gated_rmsnorm(x, x_res, gate_x) # Sandwich norm
return x
def ff_block_y(self, y, scale_y, gate_y):
y_mod = modulated_rmsnorm(y, scale_y)
y_res = self.mlp_y(y_mod)
y = residual_tanh_gated_rmsnorm(y, y_res, gate_y) # Sandwich norm
return y
# @torch.compile(disable=not COMPILE_FINAL_LAYER)
class FinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(
self,
hidden_size,
patch_size,
out_channels,
device: Optional[torch.device] = None,
):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, device=device)
self.mod = nn.Linear(hidden_size, 2 * hidden_size, device=device)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, device=device)
def forward(self, x, c):
# c = F.silu(c)
# shift, scale = self.mod(c).chunk(2, dim=1)
B, T, pH, pW, D = c.shape #TODO
# adapt shape of c to c_x TODO
c_x = rearrange(c, "B T pH pW D -> B (T pH pW) D")
c_x = F.silu(c_x)
shift, scale = self.mod(c_x).chunk(2, dim=2)
# shift, scale = self.mod(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class AsymmDiTJoint(nn.Module):
"""
Diffusion model with a Transformer backbone.
Ingests text embeddings instead of a label.
"""
def __init__(
self,
*,
patch_size=2,
in_channels=4,
hidden_size_x=1152,
hidden_size_y=1152,
depth=48,
num_heads=16,
mlp_ratio_x=8.0,
mlp_ratio_y=4.0,
t5_feat_dim: int = 4096,
t5_token_length: int = 256,
patch_embed_bias: bool = True,
timestep_mlp_bias: bool = True,
timestep_scale: Optional[float] = None,
use_extended_posenc: bool = False,
rope_theta: float = 10000.0,
device: Optional[torch.device] = None,
**block_kwargs,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = in_channels
self.patch_size = patch_size
self.num_heads = num_heads
self.hidden_size_x = hidden_size_x
self.hidden_size_y = hidden_size_y
self.head_dim = hidden_size_x // num_heads # Head dimension and count is determined by visual.
self.use_extended_posenc = use_extended_posenc
self.t5_token_length = t5_token_length
self.t5_feat_dim = t5_feat_dim
self.rope_theta = rope_theta # Scaling factor for frequency computation for temporal RoPE.
self.x_embedder = PatchEmbed(
patch_size=patch_size,
in_chans=in_channels,
embed_dim=hidden_size_x,
bias=patch_embed_bias,
device=device,
)
# Conditionings
# Timestep
self.t_embedder = TimestepEmbedder(hidden_size_x, bias=timestep_mlp_bias, timestep_scale=timestep_scale)
# Caption Pooling (T5)
self.t5_y_embedder = AttentionPool(t5_feat_dim, num_heads=8, output_dim=hidden_size_x, device=device)
# Dense Embedding Projection (T5)
self.t5_yproj = nn.Linear(t5_feat_dim, hidden_size_y, bias=True, device=device)
# Initialize pos_frequencies as an empty parameter.
# self.pos_frequencies = nn.Parameter(torch.empty(3, self.num_heads, self.head_dim // 2, device=device))
self.pos_frequencies = nn.Parameter(torch.ones(3, self.num_heads, self.head_dim // 2, device=device)*0.5)
# for depth 48:
# b = 0: AsymmetricJointBlock, update_y=True
# b = 1: AsymmetricJointBlock, update_y=True
# ...
# b = 46: AsymmetricJointBlock, update_y=True
# b = 47: AsymmetricJointBlock, update_y=False. No need to update text features.
blocks = []
for b in range(depth):
# Joint multi-modal block
update_y = b < depth - 1
block = AsymmetricJointBlock(
hidden_size_x,
hidden_size_y,
num_heads,
mlp_ratio_x=mlp_ratio_x,
mlp_ratio_y=mlp_ratio_y,
update_y=update_y,
device=device,
**block_kwargs,
)
blocks.append(block)
self.blocks = nn.ModuleList(blocks)
self.final_layer = FinalLayer(hidden_size_x, patch_size, self.out_channels, device=device)
def embed_x(self, x: torch.Tensor) -> torch.Tensor:
"""
Args:
x: (B, C=12, T, H, W) tensor of visual tokens
Returns:
x: (B, C=3072, N) tensor of visual tokens with positional embedding.
"""
return self.x_embedder(x) # Convert BcTHW to BCN
# @torch.compile(disable=not COMPILE_MMDIT_BLOCK)
def prepare(
self,
x: torch.Tensor,
sigma: torch.Tensor,
t5_feat: torch.Tensor,
t5_mask: torch.Tensor,
):
"""Prepare input and conditioning embeddings."""
with torch.profiler.record_function("x_emb_pe"):
# Visual patch embeddings with positional encoding.
T, H, W = x.shape[-3:]
pH, pW = H // self.patch_size, W // self.patch_size
x = self.embed_x(x) # (B, N, D), where N = T * H * W / patch_size ** 2
assert x.ndim == 3
B = x.size(0)
# ipdb.set_trace()
with torch.profiler.record_function("rope_cis"):
# Construct position array of size [N, 3].
# pos[:, 0] is the frame index for each location,
# pos[:, 1] is the row index for each location, and
# pos[:, 2] is the column index for each location.
pH, pW = H // self.patch_size, W // self.patch_size
N = T * pH * pW
assert x.size(1) == N
pos = create_position_matrix(T, pH=pH, pW=pW, device=x.device, dtype=torch.float32) # (N, 3)
rope_cos, rope_sin = compute_mixed_rotation(
freqs=self.pos_frequencies, pos=pos
) # Each are (N, num_heads, dim // 2)
# ipdb.set_trace()
with torch.profiler.record_function("t_emb"):
# Global vector embedding for conditionings.
c_t = self.t_embedder(1 - sigma) # (B, D)
with torch.profiler.record_function("t5_pool"):
# Pool T5 tokens using attention pooler
# Note y_feat[1] contains T5 token features.
assert (
t5_feat.size(1) == self.t5_token_length
), f"Expected L={self.t5_token_length}, got {t5_feat.shape} for y_feat."
t5_y_pool = self.t5_y_embedder(t5_feat, t5_mask) # (B, D)
assert t5_y_pool.size(0) == B, f"Expected B={B}, got {t5_y_pool.shape} for t5_y_pool."
t5_y_pool = t5_y_pool.unsqueeze(1).expand(B, c_t.shape[1], t5_y_pool.shape[1])
c = c_t + t5_y_pool
# c = c.unsqueeze(1).unsqueeze(2).unsqueeze(3).repeat(1, T, pH, pW, 1) # TODO
c = c.unsqueeze(2).unsqueeze(3).repeat(1, 1, pH, pW, 1) # TODO
# c = rearrange(c, "B T pH pW D -> B (T pH pW) D")
# c = c.unsqueeze(1).repeat(1, T, 1)
y_feat = self.t5_yproj(t5_feat) # (B, L, t5_feat_dim) --> (B, L, D)
return x, c, y_feat, rope_cos, rope_sin
def forward(
self,
x: torch.Tensor,
sigma: torch.Tensor,
y_feat: List[torch.Tensor],
y_mask: List[torch.Tensor],
packed_indices: Dict[str, torch.Tensor] = None,
rope_cos: torch.Tensor = None,
rope_sin: torch.Tensor = None,
):
"""Forward pass of DiT.
Args:
x: (B, C, T, H, W) tensor of spatial inputs (images or latent representations of images)
sigma: (B,) tensor of noise standard deviations
y_feat: List((B, L, y_feat_dim) tensor of caption token features. For SDXL text encoders: L=77, y_feat_dim=2048)
y_mask: List((B, L) boolean tensor indicating which tokens are not padding)
packed_indices: Dict with keys for Flash Attention. Result of compute_packed_indices.
"""
B, _, T, H, W = x.shape
with sdpa_kernel(torch.nn.attention.SDPBackend.EFFICIENT_ATTENTION):
x, c, y_feat, rope_cos, rope_sin = self.prepare(x, sigma, y_feat[0], y_mask[0])
del y_mask
N = x.size(1)
M = N
for i, block in enumerate(self.blocks):
# print(f"\nBlock {i}:")
x_prev, y_prev = x, y_feat # Store previous values for debugging
x, y_feat = block(
x,
c,
y_feat,
rope_cos=rope_cos,
rope_sin=rope_sin,
packed_indices=packed_indices,
)
del y_feat # Final layers don't use dense text features.
# Final layer processing
x = self.final_layer(x, c)
patch = x.size(2)
# First make the input tensor contiguous
x = x.contiguous()
# Perform rearrange and immediately create a new tensor
x = rearrange(
x,
"B (T hp wp) (p1 p2 c) -> B c T (hp p1) (wp p2)",
T=T,
hp=H // self.patch_size,
wp=W // self.patch_size,
p1=self.patch_size,
p2=self.patch_size,
c=self.out_channels,
).contiguous() # Force new memory allocation
return x |