File size: 6,989 Bytes
96257b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from typing import Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F


def modulate(x, shift, scale):
    # return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) 
    return x * (1 + scale) + shift # TODO


def pool_tokens(x: torch.Tensor, mask: torch.Tensor, *, keepdim=False) -> torch.Tensor:
    """

    Pool tokens in x using mask.



    NOTE: We assume x does not require gradients.



    Args:

        x: (B, L, D) tensor of tokens.

        mask: (B, L) boolean tensor indicating which tokens are not padding.



    Returns:

        pooled: (B, D) tensor of pooled tokens.

    """
    assert x.size(1) == mask.size(1)  # Expected mask to have same length as tokens.
    assert x.size(0) == mask.size(0)  # Expected mask to have same batch size as tokens.
    mask = mask[:, :, None].to(dtype=x.dtype)
    mask = mask / mask.sum(dim=1, keepdim=True).clamp(min=1)
    pooled = (x * mask).sum(dim=1, keepdim=keepdim)
    return pooled


class AttentionPool(nn.Module):
    def __init__(

        self,

        embed_dim: int,

        num_heads: int,

        output_dim: int = None,

        device: Optional[torch.device] = None,

    ):
        """

        Args:

            spatial_dim (int): Number of tokens in sequence length.

            embed_dim (int): Dimensionality of input tokens.

            num_heads (int): Number of attention heads.

            output_dim (int): Dimensionality of output tokens. Defaults to embed_dim.

        """
        super().__init__()
        self.num_heads = num_heads
        self.to_kv = nn.Linear(embed_dim, 2 * embed_dim, device=device)
        self.to_q = nn.Linear(embed_dim, embed_dim, device=device)
        self.to_out = nn.Linear(embed_dim, output_dim or embed_dim, device=device)

    def forward(self, x, mask):
        """

        Args:

            x (torch.Tensor): (B, L, D) tensor of input tokens.

            mask (torch.Tensor): (B, L) boolean tensor indicating which tokens are not padding.



        NOTE: We assume x does not require gradients.



        Returns:

            x (torch.Tensor): (B, D) tensor of pooled tokens.

        """
        D = x.size(2)

        # Construct attention mask, shape: (B, 1, num_queries=1, num_keys=1+L).
        attn_mask = mask[:, None, None, :].bool()  # (B, 1, 1, L).
        attn_mask = F.pad(attn_mask, (1, 0), value=True)  # (B, 1, 1, 1+L).

        # Average non-padding token features. These will be used as the query.
        x_pool = pool_tokens(x, mask, keepdim=True)  # (B, 1, D)

        # Concat pooled features to input sequence.
        x = torch.cat([x_pool, x], dim=1)  # (B, L+1, D)

        # Compute queries, keys, values. Only the mean token is used to create a query.
        kv = self.to_kv(x)  # (B, L+1, 2 * D)
        q = self.to_q(x[:, 0])  # (B, D)

        # Extract heads.
        head_dim = D // self.num_heads
        kv = kv.unflatten(2, (2, self.num_heads, head_dim)).contiguous()  # (B, 1+L, 2, H, head_dim)
        kv = kv.transpose(1, 3).contiguous()  # (B, H, 2, 1+L, head_dim)
        k, v = kv.unbind(2)  # (B, H, 1+L, head_dim)
        q = q.unflatten(1, (self.num_heads, head_dim)).contiguous()  # (B, H, head_dim)
        q = q.unsqueeze(2)  # (B, H, 1, head_dim)

        # Compute attention.
        x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=0.0)  # (B, H, 1, head_dim)

        # Concatenate heads and run output.
        x = x.squeeze(2).flatten(1, 2).contiguous()  # (B, D = H * head_dim)
        x = self.to_out(x)
        return x


class PadSplitXY(torch.nn.Module):
    """

    Merge heads, pad and extract visual and text tokens,

    and split along the sequence length.

    """
    def __init__(self):
        super(PadSplitXY, self).__init__()

    def forward(

        self,

        xy: torch.Tensor,

        indices: torch.Tensor,

        B: int,

        N: int,

        L: int,

        dtype: torch.dtype,

    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """

        Args:

            xy: Packed tokens. Shape: (total <= B * (N + L), num_heads * head_dim).

            indices: Valid token indices out of unpacked tensor. Shape: (total,)



        Returns:

            x: Visual tokens. Shape: (B, N, num_heads * head_dim).

            y: Text tokens. Shape: (B, L, num_heads * head_dim).

        """
        B, N, L = B, N, L
        D = xy.size(1)

        # Pad sequences to (B, N + L, dim).
        assert indices.ndim == 1
        output = torch.zeros(B * (N + L), D, device=xy.device, dtype=dtype)
        indices = indices.unsqueeze(1).expand(-1, D)  # (total,) -> (total, num_heads * head_dim)
        output.scatter_(0, indices, xy)
        xy = output.view(B, N + L, D).contiguous()

        # Split visual and text tokens along the sequence length.
        return torch.tensor_split(xy, (N,), dim=1)


# def pad_and_split_xy(xy, indices, B, N, L, dtype) -> Tuple[torch.Tensor, torch.Tensor]:
#     return PadSplitXY.apply(xy, indices, B, N, L, dtype)

def pad_and_split_xy(xy, indices, B, N, L, dtype) -> Tuple[torch.Tensor, torch.Tensor]:
    pad = PadSplitXY()
    return pad.forward(xy, indices, B, N, L, dtype)

class UnifyStreams(torch.nn.Module):
    """Unify visual and text streams."""
    def __init__(self):
        super(UnifyStreams, self).__init__()

    def forward(

        self,

        q_x: torch.Tensor,

        k_x: torch.Tensor,

        v_x: torch.Tensor,

        q_y: torch.Tensor,

        k_y: torch.Tensor,

        v_y: torch.Tensor,

        indices: torch.Tensor,

    ):
        """

        Args:

            q_x: (B, N, num_heads, head_dim)

            k_x: (B, N, num_heads, head_dim)

            v_x: (B, N, num_heads, head_dim)

            q_y: (B, L, num_heads, head_dim)

            k_y: (B, L, num_heads, head_dim)

            v_y: (B, L, num_heads, head_dim)

            indices: (total <= B * (N + L))



        Returns:

            qkv: (total <= B * (N + L), 3, num_heads, head_dim)

        """
        B, N, num_heads, head_dim = q_x.size()
        B, N, L = B, N, q_y.size(1)
        D = num_heads * head_dim

        q = torch.cat([q_x, q_y], dim=1)
        k = torch.cat([k_x, k_y], dim=1)
        v = torch.cat([v_x, v_y], dim=1)
        qkv = torch.stack([q, k, v], dim=2).view(B * (N + L), 3, D)

        indices = indices[:, None, None].expand(-1, 3, D)
        qkv = torch.gather(qkv, 0, indices)  # (total, 3, num_heads * head_dim)
        return qkv.unflatten(2, (num_heads, head_dim)).contiguous()



# def unify_streams(q_x, k_x, v_x, q_y, k_y, v_y, indices) -> torch.Tensor:
#     return UnifyStreams.apply(q_x, k_x, v_x, q_y, k_y, v_y, indices)

def unify_streams(q_x, k_x, v_x, q_y, k_y, v_y, indices) -> torch.Tensor:
    stream = UnifyStreams()
    return stream.forward(q_x, k_x, v_x, q_y, k_y, v_y, indices)