Spaces:
Paused
Paused
File size: 42,141 Bytes
96257b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 |
from functools import partial
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
import torch.distributed as dist
import genmo.mochi_preview.dit.joint_model.context_parallel as cp
from genmo.lib.progress import get_new_progress_bar
from genmo.mochi_preview.vae.cp_conv import cp_pass_frames, gather_all_frames
from genmo.mochi_preview.vae.latent_dist import LatentDistribution
import genmo.mochi_preview.vae.cp_conv as cp_conv
def cast_tuple(t, length=1):
return t if isinstance(t, tuple) else ((t,) * length)
class GroupNormSpatial(nn.GroupNorm):
"""
GroupNorm applied per-frame.
"""
def forward(self, x: torch.Tensor, *, chunk_size: int = 8):
B, C, T, H, W = x.shape
x = rearrange(x, "B C T H W -> (B T) C H W")
# Run group norm in chunks.
output = torch.empty_like(x)
for b in range(0, B * T, chunk_size):
output[b : b + chunk_size] = super().forward(x[b : b + chunk_size])
return rearrange(output, "(B T) C H W -> B C T H W", B=B, T=T)
class SafeConv3d(torch.nn.Conv3d):
"""
NOTE: No support for padding along time dimension.
Input must already be padded along time.
"""
def forward(self, input):
memory_count = torch.prod(torch.tensor(input.shape)).item() * 2 / 1024**3
if memory_count > 2 and self.stride[0] == 1:
part_num = int(memory_count / 2) + 1
k = self.kernel_size[0]
input_idx = torch.arange(k - 1, input.size(2))
input_chunks_idx = torch.chunk(input_idx, part_num, dim=0)
# assert self.stride[0] == 1, f"stride {self.stride}"
assert self.dilation[0] == 1, f"dilation {self.dilation}"
assert self.padding[0] == 0, f"padding {self.padding}"
# Comptue output size
assert not input.requires_grad
B, _, T_in, H_in, W_in = input.shape
output_size = (
B,
self.out_channels,
T_in - k + 1,
H_in // self.stride[1],
W_in // self.stride[2],
)
output = torch.empty(output_size, dtype=input.dtype, device=input.device)
for input_chunk_idx in input_chunks_idx:
input_s = input_chunk_idx[0] - k + 1
input_e = input_chunk_idx[-1] + 1
input_chunk = input[:, :, input_s:input_e, :, :]
output_chunk = super(SafeConv3d, self).forward(input_chunk)
output_s = input_s
output_e = output_s + output_chunk.size(2)
output[:, :, output_s:output_e, :, :] = output_chunk
return output
else:
return super(SafeConv3d, self).forward(input)
class StridedSafeConv3d(torch.nn.Conv3d):
def forward(self, input, local_shard: bool = False):
assert self.stride[0] == self.kernel_size[0]
assert self.dilation[0] == 1
assert self.padding[0] == 0
kernel_size = self.kernel_size[0]
stride = self.stride[0]
T_in = input.size(2)
T_out = T_in // kernel_size
# Parallel implementation.
if local_shard:
idx = torch.arange(T_out)
idx = cp.local_shard(idx, dim=0)
start = idx.min() * stride
end = idx.max() * stride + kernel_size
local_input = input[:, :, start:end, :, :]
return torch.nn.Conv3d.forward(self, local_input)
raise NotImplementedError
class ContextParallelConv3d(SafeConv3d):
def __init__(
self,
in_channels,
out_channels,
kernel_size: Union[int, Tuple[int, int, int]],
stride: Union[int, Tuple[int, int, int]],
causal: bool = True,
context_parallel: bool = True,
**kwargs,
):
self.causal = causal
self.context_parallel = context_parallel
kernel_size = cast_tuple(kernel_size, 3)
stride = cast_tuple(stride, 3)
height_pad = (kernel_size[1] - 1) // 2
width_pad = (kernel_size[2] - 1) // 2
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
dilation=(1, 1, 1),
padding=(0, height_pad, width_pad),
**kwargs,
)
def forward(self, x: torch.Tensor):
cp_rank, cp_world_size = cp.get_cp_rank_size()
# Compute padding amounts.
context_size = self.kernel_size[0] - 1
if self.causal:
pad_front = context_size
pad_back = 0
else:
pad_front = context_size // 2
pad_back = context_size - pad_front
# Apply padding.
mode = "constant" if self.padding_mode == "zeros" else self.padding_mode
if self.context_parallel and cp_world_size == 1:
x = F.pad(x, (0, 0, 0, 0, pad_front, pad_back), mode=mode)
else:
if cp_rank == 0:
x = F.pad(x, (0, 0, 0, 0, pad_front, 0), mode=mode)
elif cp_rank == cp_world_size - 1 and pad_back:
x = F.pad(x, (0, 0, 0, 0, 0, pad_back), mode=mode)
if self.context_parallel and cp_world_size == 1:
return super().forward(x)
if self.stride[0] == 1:
# Receive some frames from previous rank.
x = cp_pass_frames(x, context_size)
return super().forward(x)
# Less efficient implementation for strided convs.
# All gather x, infer and chunk.
assert x.dtype == torch.bfloat16, f"Expected x to be of type torch.bfloat16, got {x.dtype}"
# if cp_rank == 0:
# print(f"ContextParallelConv3d: cp_rank: {cp_rank}, cp_world_size: {cp_world_size}, x.shape: {x.shape}, context_size: {context_size},self.kernel_size: {self.kernel_size}, self.stride: {self.stride}")
# """print:
# ContextParallelConv3d: cp_rank: 0, cp_world_size: 8, x.shape: torch.Size([1, 128, 22, 240, 424]), context_size: 1,self.kernel_size: (2, 2, 2), self.stride: (2, 2, 2)
# ContextParallelConv3d: cp_rank: 0, cp_world_size: 8, x.shape: torch.Size([1, 256, 13, 120, 212]), context_size: 2,self.kernel_size: (3, 2, 2), self.stride: (3, 2, 2)
# """
x = gather_all_frames(x) # [B, C, k - 1 + global_T, H, W]
# if cp_rank == 0:
# print(f"gather_all_frames: cp_rank: {cp_rank}, cp_world_size: {cp_world_size}, x.shape: {x.shape}, context_size: {context_size},self.kernel_size: {self.kernel_size}, self.stride: {self.stride}")
# """print:
# gather_all_frames: cp_rank: 0, cp_world_size: 8, x.shape: torch.Size([1, 128, 164, 240, 424]), context_size: 1,self.kernel_size: (2, 2, 2), self.stride: (2, 2, 2)
# gather_all_frames: cp_rank: 0, cp_world_size: 8, x.shape: torch.Size([1, 256, 84, 120, 212]), context_size: 2,self.kernel_size: (3, 2, 2), self.stride: (3, 2, 2)
# """
return StridedSafeConv3d.forward(self, x, local_shard=True)
class Conv1x1(nn.Linear):
"""*1x1 Conv implemented with a linear layer."""
def __init__(self, in_features: int, out_features: int, *args, **kwargs):
super().__init__(in_features, out_features, *args, **kwargs)
def forward(self, x: torch.Tensor):
"""Forward pass.
Args:
x: Input tensor. Shape: [B, C, *] or [B, *, C].
Returns:
x: Output tensor. Shape: [B, C', *] or [B, *, C'].
"""
x = x.movedim(1, -1)
x = super().forward(x)
x = x.movedim(-1, 1)
return x
class DepthToSpaceTime(nn.Module):
def __init__(
self,
temporal_expansion: int,
spatial_expansion: int,
):
super().__init__()
self.temporal_expansion = temporal_expansion
self.spatial_expansion = spatial_expansion
# When printed, this module should show the temporal and spatial expansion factors.
def extra_repr(self):
return f"texp={self.temporal_expansion}, sexp={self.spatial_expansion}"
def forward(self, x: torch.Tensor):
"""Forward pass.
Args:
x: Input tensor. Shape: [B, C, T, H, W].
Returns:
x: Rearranged tensor. Shape: [B, C/(st*s*s), T*st, H*s, W*s].
"""
x = rearrange(
x,
"B (C st sh sw) T H W -> B C (T st) (H sh) (W sw)",
st=self.temporal_expansion,
sh=self.spatial_expansion,
sw=self.spatial_expansion,
)
cp_rank, _ = cp.get_cp_rank_size()
if self.temporal_expansion > 1 and cp_rank == 0:
# Drop the first self.temporal_expansion - 1 frames.
# This is because we always want the 3x3x3 conv filter to only apply
# to the first frame, and the first frame doesn't need to be repeated.
assert all(x.shape)
x = x[:, :, self.temporal_expansion - 1 :]
assert all(x.shape)
return x
def norm_fn(
in_channels: int,
affine: bool = True,
):
return GroupNormSpatial(affine=affine, num_groups=32, num_channels=in_channels)
class ResBlock(nn.Module):
"""Residual block that preserves the spatial dimensions."""
def __init__(
self,
channels: int,
*,
affine: bool = True,
attn_block: Optional[nn.Module] = None,
causal: bool = True,
prune_bottleneck: bool = False,
padding_mode: str,
bias: bool = True,
):
super().__init__()
self.channels = channels
assert causal
self.stack = nn.Sequential(
norm_fn(channels, affine=affine),
nn.SiLU(inplace=True),
ContextParallelConv3d(
in_channels=channels,
out_channels=channels // 2 if prune_bottleneck else channels,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
padding_mode=padding_mode,
bias=bias,
causal=causal,
),
norm_fn(channels, affine=affine),
nn.SiLU(inplace=True),
ContextParallelConv3d(
in_channels=channels // 2 if prune_bottleneck else channels,
out_channels=channels,
kernel_size=(3, 3, 3),
stride=(1, 1, 1),
padding_mode=padding_mode,
bias=bias,
causal=causal,
),
)
self.attn_block = attn_block if attn_block else nn.Identity()
def forward(self, x: torch.Tensor):
"""Forward pass.
Args:
x: Input tensor. Shape: [B, C, T, H, W].
"""
residual = x
x = self.stack(x)
x = x + residual
del residual
return self.attn_block(x)
def prepare_for_attention(qkv: torch.Tensor, head_dim: int, qk_norm: bool = True):
"""Prepare qkv tensor for attention and normalize qk.
Args:
qkv: Input tensor. Shape: [B, L, 3 * num_heads * head_dim].
Returns:
q, k, v: qkv tensor split into q, k, v. Shape: [B, num_heads, L, head_dim].
"""
assert qkv.ndim == 3 # [B, L, 3 * num_heads * head_dim]
assert qkv.size(2) % (3 * head_dim) == 0
num_heads = qkv.size(2) // (3 * head_dim)
qkv = qkv.unflatten(2, (3, num_heads, head_dim))
q, k, v = qkv.unbind(2) # [B, L, num_heads, head_dim]
q = q.transpose(1, 2) # [B, num_heads, L, head_dim]
k = k.transpose(1, 2) # [B, num_heads, L, head_dim]
v = v.transpose(1, 2) # [B, num_heads, L, head_dim]
if qk_norm:
q = F.normalize(q, p=2, dim=-1)
k = F.normalize(k, p=2, dim=-1)
# Mixed precision can change the dtype of normed q/k to float32.
q = q.to(dtype=qkv.dtype)
k = k.to(dtype=qkv.dtype)
return q, k, v
class Attention(nn.Module):
def __init__(
self,
dim: int,
head_dim: int = 32,
qkv_bias: bool = False,
out_bias: bool = True,
qk_norm: bool = True,
) -> None:
super().__init__()
self.head_dim = head_dim
self.num_heads = dim // head_dim
self.qk_norm = qk_norm
self.qkv = nn.Linear(dim, 3 * dim, bias=qkv_bias)
self.out = nn.Linear(dim, dim, bias=out_bias)
def forward(
self,
x: torch.Tensor,
*,
chunk_size=2**15,
) -> torch.Tensor:
"""Compute temporal self-attention.
Args:
x: Input tensor. Shape: [B, C, T, H, W].
chunk_size: Chunk size for large tensors.
Returns:
x: Output tensor. Shape: [B, C, T, H, W].
"""
B, _, T, H, W = x.shape
if T == 1:
# No attention for single frame.
x = x.movedim(1, -1) # [B, C, T, H, W] -> [B, T, H, W, C]
qkv = self.qkv(x)
_, _, x = qkv.chunk(3, dim=-1) # Throw away queries and keys.
x = self.out(x)
return x.movedim(-1, 1) # [B, T, H, W, C] -> [B, C, T, H, W]
# 1D temporal attention.
x = rearrange(x, "B C t h w -> (B h w) t C")
qkv = self.qkv(x)
# Input: qkv with shape [B, t, 3 * num_heads * head_dim]
# Output: x with shape [B, num_heads, t, head_dim]
q, k, v = prepare_for_attention(qkv, self.head_dim, qk_norm=self.qk_norm)
attn_kwargs = dict(
attn_mask=None,
dropout_p=0.0,
is_causal=True,
scale=self.head_dim**-0.5,
)
if q.size(0) <= chunk_size:
x = F.scaled_dot_product_attention(q, k, v, **attn_kwargs) # [B, num_heads, t, head_dim]
else:
# Evaluate in chunks to avoid `RuntimeError: CUDA error: invalid configuration argument.`
# Chunks of 2**16 and up cause an error.
x = torch.empty_like(q)
for i in range(0, q.size(0), chunk_size):
qc = q[i : i + chunk_size]
kc = k[i : i + chunk_size]
vc = v[i : i + chunk_size]
chunk = F.scaled_dot_product_attention(qc, kc, vc, **attn_kwargs)
x[i : i + chunk_size].copy_(chunk)
assert x.size(0) == q.size(0)
x = x.transpose(1, 2) # [B, t, num_heads, head_dim]
x = x.flatten(2) # [B, t, num_heads * head_dim]
x = self.out(x)
x = rearrange(x, "(B h w) t C -> B C t h w", B=B, h=H, w=W)
return x
class AttentionBlock(nn.Module):
def __init__(
self,
dim: int,
**attn_kwargs,
) -> None:
super().__init__()
self.norm = norm_fn(dim)
self.attn = Attention(dim, **attn_kwargs)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x + self.attn(self.norm(x))
class CausalUpsampleBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
num_res_blocks: int,
*,
temporal_expansion: int = 2,
spatial_expansion: int = 2,
**block_kwargs,
):
super().__init__()
blocks = []
for _ in range(num_res_blocks):
blocks.append(block_fn(in_channels, **block_kwargs))
self.blocks = nn.Sequential(*blocks)
self.temporal_expansion = temporal_expansion
self.spatial_expansion = spatial_expansion
# Change channels in the final convolution layer.
self.proj = Conv1x1(
in_channels,
out_channels * temporal_expansion * (spatial_expansion**2),
)
self.d2st = DepthToSpaceTime(temporal_expansion=temporal_expansion, spatial_expansion=spatial_expansion)
def forward(self, x):
x = self.blocks(x)
x = self.proj(x)
x = self.d2st(x)
return x
def block_fn(channels, *, affine: bool = True, has_attention: bool = False, **block_kwargs):
attn_block = AttentionBlock(channels) if has_attention else None
return ResBlock(channels, affine=affine, attn_block=attn_block, **block_kwargs)
def add_fourier_features(inputs: torch.Tensor, start=6, stop=8, step=1):
num_freqs = (stop - start) // step
assert inputs.ndim == 5
C = inputs.size(1)
# Create Base 2 Fourier features.
freqs = torch.arange(start, stop, step, dtype=inputs.dtype, device=inputs.device)
assert num_freqs == len(freqs)
w = torch.pow(2.0, freqs) * (2 * torch.pi) # [num_freqs]
C = inputs.shape[1]
w = w.repeat(C)[None, :, None, None, None] # [1, C * num_freqs, 1, 1, 1]
# Interleaved repeat of input channels to match w.
h = inputs.repeat_interleave(num_freqs, dim=1) # [B, C * num_freqs, T, H, W]
# Scale channels by frequency.
h = w * h
return torch.cat(
[
inputs,
torch.sin(h),
torch.cos(h),
],
dim=1,
)
class FourierFeatures(nn.Module):
def __init__(self, start: int = 6, stop: int = 8, step: int = 1):
super().__init__()
self.start = start
self.stop = stop
self.step = step
def forward(self, inputs):
"""Add Fourier features to inputs.
Args:
inputs: Input tensor. Shape: [B, C, T, H, W]
Returns:
h: Output tensor. Shape: [B, (1 + 2 * num_freqs) * C, T, H, W]
"""
return add_fourier_features(inputs, self.start, self.stop, self.step)
class Decoder(nn.Module):
def __init__(
self,
*,
out_channels: int = 3,
latent_dim: int,
base_channels: int,
channel_multipliers: List[int],
num_res_blocks: List[int],
temporal_expansions: Optional[List[int]] = None,
spatial_expansions: Optional[List[int]] = None,
has_attention: List[bool],
output_norm: bool = True,
nonlinearity: str = "silu",
output_nonlinearity: str = "silu",
causal: bool = True,
**block_kwargs,
):
super().__init__()
self.input_channels = latent_dim
self.base_channels = base_channels
self.channel_multipliers = channel_multipliers
self.num_res_blocks = num_res_blocks
self.output_nonlinearity = output_nonlinearity
assert nonlinearity == "silu"
assert causal
ch = [mult * base_channels for mult in channel_multipliers]
self.num_up_blocks = len(ch) - 1
assert len(num_res_blocks) == self.num_up_blocks + 2
blocks = []
new_block_fn = partial(block_fn, padding_mode="replicate")
first_block = [nn.Conv3d(latent_dim, ch[-1], kernel_size=(1, 1, 1))] # Input layer.
# First set of blocks preserve channel count.
for _ in range(num_res_blocks[-1]):
first_block.append(
new_block_fn(
ch[-1],
has_attention=has_attention[-1],
causal=causal,
**block_kwargs,
)
)
blocks.append(nn.Sequential(*first_block))
assert len(temporal_expansions) == len(spatial_expansions) == self.num_up_blocks
assert len(num_res_blocks) == len(has_attention) == self.num_up_blocks + 2
upsample_block_fn = CausalUpsampleBlock
for i in range(self.num_up_blocks):
block = upsample_block_fn(
ch[-i - 1],
ch[-i - 2],
num_res_blocks=num_res_blocks[-i - 2],
has_attention=has_attention[-i - 2],
temporal_expansion=temporal_expansions[-i - 1],
spatial_expansion=spatial_expansions[-i - 1],
causal=causal,
padding_mode="replicate",
**block_kwargs,
)
blocks.append(block)
assert not output_norm
# Last block. Preserve channel count.
last_block = []
for _ in range(num_res_blocks[0]):
last_block.append(new_block_fn(ch[0], has_attention=has_attention[0], causal=causal, **block_kwargs))
blocks.append(nn.Sequential(*last_block))
self.blocks = nn.ModuleList(blocks)
self.output_proj = Conv1x1(ch[0], out_channels)
def forward(self, x):
"""Forward pass.
Args:
x: Latent tensor. Shape: [B, input_channels, t, h, w]. Scaled [-1, 1].
Returns:
x: Reconstructed video tensor. Shape: [B, C, T, H, W]. Scaled to [-1, 1].
T + 1 = (t - 1) * 4.
H = h * 16, W = w * 16.
"""
for block in self.blocks:
x = block(x)
if self.output_nonlinearity == "silu":
x = F.silu(x, inplace=not self.training)
else:
assert not self.output_nonlinearity # StyleGAN3 omits the to-RGB nonlinearity.
return self.output_proj(x).contiguous()
def make_broadcastable(
tensor: torch.Tensor,
axis: int,
ndim: int,
) -> torch.Tensor:
"""
Reshapes the input tensor to have singleton dimensions in all axes except the specified axis.
Args:
tensor (torch.Tensor): The tensor to reshape. Typically 1D.
axis (int): The axis along which the tensor should retain its original size.
ndim (int): The total number of dimensions the reshaped tensor should have.
Returns:
torch.Tensor: The reshaped tensor with shape suitable for broadcasting.
"""
if tensor.dim() != 1:
raise ValueError(f"Expected tensor to be 1D, but got {tensor.dim()}D tensor.")
axis = (axis + ndim) % ndim # Ensure the axis is within the tensor dimensions
shape = [1] * ndim # Start with all dimensions as 1
shape[axis] = tensor.size(0) # Set the specified axis to the size of the tensor
return tensor.view(*shape)
def blend(a: torch.Tensor, b: torch.Tensor, axis: int) -> torch.Tensor:
"""
Blends two tensors `a` and `b` along the specified axis using linear interpolation.
Args:
a (torch.Tensor): The first tensor.
b (torch.Tensor): The second tensor. Must have the same shape as `a`.
axis (int): The axis along which to perform the blending.
Returns:
torch.Tensor: The blended tensor.
"""
assert a.shape == b.shape, f"Tensors must have the same shape, got {a.shape} and {b.shape}"
steps = a.size(axis)
# Create a weight tensor that linearly interpolates from 0 to 1
start = 1 / (steps + 1)
end = steps / (steps + 1)
weight = torch.linspace(start, end, steps=steps, device=a.device, dtype=a.dtype)
# Make the weight tensor broadcastable across all dimensions
weight = make_broadcastable(weight, axis, a.dim())
# Perform the blending
return a * (1 - weight) + b * weight
def blend_horizontal(a: torch.Tensor, b: torch.Tensor, overlap: int) -> torch.Tensor:
if overlap == 0:
return torch.cat([a, b], dim=-1)
assert a.size(-1) >= overlap
assert b.size(-1) >= overlap
a_left, a_overlap = a[..., :-overlap], a[..., -overlap:]
b_overlap, b_right = b[..., :overlap], b[..., overlap:]
return torch.cat([a_left, blend(a_overlap, b_overlap, -1), b_right], dim=-1)
def blend_vertical(a: torch.Tensor, b: torch.Tensor, overlap: int) -> torch.Tensor:
if overlap == 0:
return torch.cat([a, b], dim=-2)
assert a.size(-2) >= overlap
assert b.size(-2) >= overlap
a_top, a_overlap = a[..., :-overlap, :], a[..., -overlap:, :]
b_overlap, b_bottom = b[..., :overlap, :], b[..., overlap:, :]
return torch.cat([a_top, blend(a_overlap, b_overlap, -2), b_bottom], dim=-2)
def nearest_multiple(x: int, multiple: int) -> int:
return round(x / multiple) * multiple
def apply_tiled(
fn: Callable[[torch.Tensor], torch.Tensor],
x: torch.Tensor,
num_tiles_w: int,
num_tiles_h: int,
overlap: int = 0, # Number of pixel of overlap between adjacent tiles.
# Use a factor of 2 times the latent downsample factor.
min_block_size: int = 1, # Minimum number of pixels in each dimension when subdividing.
) -> Optional[torch.Tensor]:
if num_tiles_w == 1 and num_tiles_h == 1:
return fn(x)
assert num_tiles_w & (num_tiles_w - 1) == 0, f"num_tiles_w={num_tiles_w} must be a power of 2"
assert num_tiles_h & (num_tiles_h - 1) == 0, f"num_tiles_h={num_tiles_h} must be a power of 2"
H, W = x.shape[-2:]
assert H % min_block_size == 0
assert W % min_block_size == 0
ov = overlap // 2
assert ov % min_block_size == 0
if num_tiles_w >= 2:
# Subdivide horizontally.
half_W = nearest_multiple(W // 2, min_block_size)
left = x[..., :, : half_W + ov]
right = x[..., :, half_W - ov :]
assert num_tiles_w % 2 == 0, f"num_tiles_w={num_tiles_w} must be even"
left = apply_tiled(fn, left, num_tiles_w // 2, num_tiles_h, overlap, min_block_size)
right = apply_tiled(fn, right, num_tiles_w // 2, num_tiles_h, overlap, min_block_size)
if left is None or right is None:
return None
# If `fn` changed the resolution, adjust the overlap.
resample_factor = left.size(-1) / (half_W + ov)
out_overlap = int(overlap * resample_factor)
return blend_horizontal(left, right, out_overlap)
if num_tiles_h >= 2:
# Subdivide vertically.
half_H = nearest_multiple(H // 2, min_block_size)
top = x[..., : half_H + ov, :]
bottom = x[..., half_H - ov :, :]
assert num_tiles_h % 2 == 0, f"num_tiles_h={num_tiles_h} must be even"
top = apply_tiled(fn, top, num_tiles_w, num_tiles_h // 2, overlap, min_block_size)
bottom = apply_tiled(fn, bottom, num_tiles_w, num_tiles_h // 2, overlap, min_block_size)
if top is None or bottom is None:
return None
# If `fn` changed the resolution, adjust the overlap.
resample_factor = top.size(-2) / (half_H + ov)
out_overlap = int(overlap * resample_factor)
return blend_vertical(top, bottom, out_overlap)
raise ValueError(f"Invalid num_tiles_w={num_tiles_w} and num_tiles_h={num_tiles_h}")
class DownsampleBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
num_res_blocks,
*,
temporal_reduction=2,
spatial_reduction=2,
**block_kwargs,
):
"""
Downsample block for the VAE encoder.
Args:
in_channels: Number of input channels.
out_channels: Number of output channels.
num_res_blocks: Number of residual blocks.
temporal_reduction: Temporal reduction factor.
spatial_reduction: Spatial reduction factor.
"""
super().__init__()
layers = []
assert in_channels != out_channels
layers.append(
ContextParallelConv3d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=(temporal_reduction, spatial_reduction, spatial_reduction),
stride=(temporal_reduction, spatial_reduction, spatial_reduction),
# First layer in each block always uses replicate padding
padding_mode="replicate",
bias=block_kwargs["bias"],
)
)
for _ in range(num_res_blocks):
layers.append(block_fn(out_channels, **block_kwargs))
self.layers = nn.Sequential(*layers)
def forward(self, x):
return self.layers(x)
class Encoder(nn.Module):
def __init__(
self,
*,
in_channels: int,
base_channels: int,
channel_multipliers: List[int],
num_res_blocks: List[int],
latent_dim: int,
temporal_reductions: List[int],
spatial_reductions: List[int],
prune_bottlenecks: List[bool],
has_attentions: List[bool],
affine: bool = True,
bias: bool = True,
input_is_conv_1x1: bool = False,
padding_mode: str,
):
super().__init__()
self.temporal_reductions = temporal_reductions
self.spatial_reductions = spatial_reductions
self.base_channels = base_channels
self.channel_multipliers = channel_multipliers
self.num_res_blocks = num_res_blocks
self.latent_dim = latent_dim
ch = [mult * base_channels for mult in channel_multipliers]
num_down_blocks = len(ch) - 1
assert len(num_res_blocks) == num_down_blocks + 2
layers = (
[nn.Conv3d(in_channels, ch[0], kernel_size=(1, 1, 1), bias=True)]
if not input_is_conv_1x1
else [Conv1x1(in_channels, ch[0])]
)
assert len(prune_bottlenecks) == num_down_blocks + 2
assert len(has_attentions) == num_down_blocks + 2
block = partial(block_fn, padding_mode=padding_mode, affine=affine, bias=bias)
for _ in range(num_res_blocks[0]):
layers.append(block(ch[0], has_attention=has_attentions[0], prune_bottleneck=prune_bottlenecks[0]))
prune_bottlenecks = prune_bottlenecks[1:]
has_attentions = has_attentions[1:]
assert len(temporal_reductions) == len(spatial_reductions) == len(ch) - 1
for i in range(num_down_blocks):
layer = DownsampleBlock(
ch[i],
ch[i + 1],
num_res_blocks=num_res_blocks[i + 1],
temporal_reduction=temporal_reductions[i],
spatial_reduction=spatial_reductions[i],
prune_bottleneck=prune_bottlenecks[i],
has_attention=has_attentions[i],
affine=affine,
bias=bias,
padding_mode=padding_mode,
)
layers.append(layer)
# Additional blocks.
for _ in range(num_res_blocks[-1]):
layers.append(block(ch[-1], has_attention=has_attentions[-1], prune_bottleneck=prune_bottlenecks[-1]))
self.layers = nn.Sequential(*layers)
# Output layers.
self.output_norm = norm_fn(ch[-1])
self.output_proj = Conv1x1(ch[-1], 2 * latent_dim, bias=False)
@property
def temporal_downsample(self):
return math.prod(self.temporal_reductions)
@property
def spatial_downsample(self):
return math.prod(self.spatial_reductions)
def forward(self, x) -> LatentDistribution:
"""Forward pass.
Args:
x: Input video tensor. Shape: [B, C, T, H, W]. Scaled to [-1, 1]
Returns:
means: Latent tensor. Shape: [B, latent_dim, t, h, w]. Scaled [-1, 1].
h = H // 8, w = W // 8, t - 1 = (T - 1) // 6
logvar: Shape: [B, latent_dim, t, h, w].
"""
assert x.ndim == 5, f"Expected 5D input, got {x.shape}"
x = self.layers(x)
x = self.output_norm(x)
x = F.silu(x, inplace=True)
x = self.output_proj(x)
means, logvar = torch.chunk(x, 2, dim=1)
assert means.ndim == 5
assert logvar.shape == means.shape
assert means.size(1) == self.latent_dim
return LatentDistribution(means, logvar)
def normalize_decoded_frames(samples):
samples = samples.float()
samples = (samples + 1.0) / 2.0
samples.clamp_(0.0, 1.0)
frames = rearrange(samples, "b c t h w -> b t h w c")
return frames
@torch.inference_mode()
def decode_latents_tiled_full(
decoder,
z,
*,
tile_sample_min_height: int = 240,
tile_sample_min_width: int = 424,
tile_overlap_factor_height: float = 0.1666,
tile_overlap_factor_width: float = 0.2,
auto_tile_size: bool = True,
frame_batch_size: int = 6,
):
B, C, T, H, W = z.shape
assert frame_batch_size <= T, f"frame_batch_size must be <= T, got {frame_batch_size} > {T}"
tile_sample_min_height = tile_sample_min_height if not auto_tile_size else H // 2 * 8
tile_sample_min_width = tile_sample_min_width if not auto_tile_size else W // 2 * 8
tile_latent_min_height = int(tile_sample_min_height / 8)
tile_latent_min_width = int(tile_sample_min_width / 8)
def blend_v(a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
for y in range(blend_extent):
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
y / blend_extent
)
return b
def blend_h(a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[4], b.shape[4], blend_extent)
for x in range(blend_extent):
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
x / blend_extent
)
return b
overlap_height = int(tile_latent_min_height * (1 - tile_overlap_factor_height))
overlap_width = int(tile_latent_min_width * (1 - tile_overlap_factor_width))
blend_extent_height = int(tile_sample_min_height * tile_overlap_factor_height)
blend_extent_width = int(tile_sample_min_width * tile_overlap_factor_width)
row_limit_height = tile_sample_min_height - blend_extent_height
row_limit_width = tile_sample_min_width - blend_extent_width
# Split z into overlapping tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
pbar = get_new_progress_bar(
desc="Decoding latent tiles",
total=len(range(0, H, overlap_height)) * len(range(0, W, overlap_width)) * len(range(T // frame_batch_size)),
)
rows = []
for i in range(0, H, overlap_height):
row = []
for j in range(0, W, overlap_width):
temporal = []
for k in range(T // frame_batch_size):
remaining_frames = T % frame_batch_size
start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames)
end_frame = frame_batch_size * (k + 1) + remaining_frames
tile = z[
:,
:,
start_frame:end_frame,
i : i + tile_latent_min_height,
j : j + tile_latent_min_width,
]
tile = decoder(tile)
temporal.append(tile)
pbar.update(1)
row.append(torch.cat(temporal, dim=2))
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = blend_v(rows[i - 1][j], tile, blend_extent_height)
if j > 0:
tile = blend_h(row[j - 1], tile, blend_extent_width)
result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width])
result_rows.append(torch.cat(result_row, dim=4))
return normalize_decoded_frames(torch.cat(result_rows, dim=3))
@torch.inference_mode()
def decode_latents_tiled_spatial(
decoder,
z,
*,
num_tiles_w: int,
num_tiles_h: int,
overlap: int = 0, # Number of pixel of overlap between adjacent tiles.
# Use a factor of 2 times the latent downsample factor.
min_block_size: int = 1, # Minimum number of pixels in each dimension when subdividing.
):
decoded = apply_tiled(decoder, z, num_tiles_w, num_tiles_h, overlap, min_block_size)
assert decoded is not None, f"Failed to decode latents with tiled spatial method"
return normalize_decoded_frames(decoded)
@torch.inference_mode()
def decode_latents(decoder, z):
cp_rank, cp_size = cp.get_cp_rank_size()
# import ipdb; ipdb.set_trace()
z = z.tensor_split(cp_size, dim=2)[cp_rank] # split along temporal dim
with torch.autocast("cuda", dtype=torch.bfloat16):
samples = decoder(z)
samples = cp_conv.gather_all_frames(samples)
return normalize_decoded_frames(samples)
@torch.inference_mode()
def encode_latents(encoder, x):
cp_rank, cp_size = cp.get_cp_rank_size()
# print(f"encode_latents: cp_rank: {cp_rank}, cp_size: {cp_size}, x.shape: {x.shape}")
x = x.tensor_split(cp_size, dim=2)[cp_rank] # split along temporal dim
# print(f"encode_latents: cp_rank: {cp_rank}, cp_size: {cp_size}, x.shape: {x.shape}")
with torch.autocast("cuda", dtype=torch.bfloat16):
z = encoder(x)
z = cp_conv.gather_all_frames(z.sample())
return z
# @torch.inference_mode()
# def encode_latents(encoder, x):
# # First gather the input across data parallel processes to ensure consistency
# if dist.is_initialized():
# world_size = dist.get_world_size()
# rank = dist.get_rank()
# gathered_x = [torch.zeros_like(x) for _ in range(world_size)]
# dist.all_gather(gathered_x, x)
# # Use the first process's data to ensure consistency
# x = gathered_x[0]
# # Now split along temporal dimension for context parallelism
# cp_rank, cp_size = cp.get_cp_rank_size()
# x = x.tensor_split(cp_size, dim=2)[cp_rank]
# with torch.autocast("cuda", dtype=torch.bfloat16):
# z = encoder(x)
# # Gather across CP ranks
# z = cp_conv.gather_all_frames(z.sample())
# # Redistribute the results back to data parallel processes
# if dist.is_initialized():
# # Split the result back according to the original batch size
# z_splits = z.chunk(world_size, dim=0)
# # Each process takes its corresponding split
# z = z_splits[rank]
# return z
if __name__ == "__main__":
import time
import torch
import torchvision
from einops import rearrange
from safetensors.torch import load_file
import os
# Enable TF32
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# Configuration matching the official test
config = dict(
in_channels=15,
base_channels=64,
channel_multipliers=[1, 2, 4, 6],
num_res_blocks=[3, 3, 4, 6, 3],
latent_dim=12,
temporal_reductions=[1, 2, 3],
spatial_reductions=[2, 2, 2],
prune_bottlenecks=[False, False, False, False, False],
has_attentions=[False, True, True, True, True],
affine=True,
bias=True,
input_is_conv_1x1=True,
padding_mode="replicate"
)
# Initialize encoder
encoder = Encoder(**config)
# Setup device and load weights
device = torch.device("cuda:0")
encoder = encoder.to(device, memory_format=torch.channels_last_3d)
# Load weights
weights_path = "/XYFS01/nudt_ljqu_1/Raphael/mochi-1-preview/encoder.safetensors"
if not os.path.exists(weights_path):
print(f"Error: Weights file not found at {weights_path}")
exit(1)
encoder.load_state_dict(load_file(weights_path))
encoder.eval()
# Create a test input (simulating video data)
B, C, T, H, W = 1, 3, 16, 256, 256
test_video = torch.randint(0, 255, (B, C, T, H, W), dtype=torch.uint8, device=device)
# Convert to float in [-1, 1] range
test_video = test_video.float() / 127.5 - 1.0
# Add Fourier features
test_video = add_fourier_features(test_video)
torch.cuda.synchronize()
# Encode video to latent
with torch.inference_mode():
with torch.autocast("cuda", dtype=torch.bfloat16):
print("\nTesting encoder...")
t0 = time.time()
latent_dist = encoder(test_video)
torch.cuda.synchronize()
encode_time = time.time() - t0
print(f"Time to encode: {encode_time:.2f}s")
# Print shapes and statistics
mean = latent_dist.mean
logvar = latent_dist.logvar
print(f"\nInput shape: {test_video.shape}")
print(f"Latent mean shape: {mean.shape}")
print(f"Latent logvar shape: {logvar.shape}")
# Print statistics
print("\nMean statistics:")
print(f"Min: {mean.min().item():.4f}")
print(f"Max: {mean.max().item():.4f}")
print(f"Mean: {mean.mean().item():.4f}")
print(f"Std: {mean.std().item():.4f}")
print("\nLogvar statistics:")
print(f"Min: {logvar.min().item():.4f}")
print(f"Max: {logvar.max().item():.4f}")
print(f"Mean: {logvar.mean().item():.4f}")
print(f"Std: {logvar.std().item():.4f}")
# Test sampling
print("\nTesting sampling from latent distribution...")
sampled = latent_dist.sample()
print(f"Sampled shape: {sampled.shape}")
|