#! /usr/bin/env python import json import os import time import click import numpy as np import torch from genmo.lib.progress import progress_bar from genmo.lib.utils import save_video from genmo.mochi_preview.pipelines_multi_frames_release import ( DecoderModelFactory, EncoderModelFactory, DitModelFactory, MochiMultiGPUPipeline, MochiSingleGPUPipeline, T5ModelFactory, linear_quadratic_schedule, ) import torch from torch.utils.data import Dataset, DataLoader import random import string from lightning.pytorch import LightningDataModule from genmo.mochi_preview.vae.models import Encoder, add_fourier_features from genmo.mochi_preview.vae.latent_dist import LatentDistribution import torchvision from einops import rearrange from safetensors.torch import load_file from genmo.mochi_preview.pipelines import DecoderModelFactory, decode_latents_tiled_spatial, decode_latents, decode_latents_tiled_full from genmo.mochi_preview.vae.vae_stats import dit_latents_to_vae_latents pipeline = None model_dir_path = None num_gpus = torch.cuda.device_count() cpu_offload = False dit_path = None def configure_model(model_dir_path_, dit_path_, cpu_offload_): global model_dir_path, dit_path, cpu_offload model_dir_path = model_dir_path_ dit_path = dit_path_ cpu_offload = cpu_offload_ def load_model(): global num_gpus, pipeline, model_dir_path, dit_path if pipeline is None: MOCHI_DIR = model_dir_path print(f"Launching with {num_gpus} GPUs. If you want to force single GPU mode use CUDA_VISIBLE_DEVICES=0.") klass = MochiSingleGPUPipeline if num_gpus == 1 else MochiMultiGPUPipeline kwargs = dict( text_encoder_factory=T5ModelFactory(), dit_factory=DitModelFactory( model_path=dit_path, model_dtype="bf16" ), decoder_factory=DecoderModelFactory( model_path=f"{MOCHI_DIR}/decoder.safetensors", ), encoder_factory=EncoderModelFactory( model_path=f"{MOCHI_DIR}/encoder.safetensors", ), ) if num_gpus > 1: assert not cpu_offload, "CPU offload not supported in multi-GPU mode" kwargs["world_size"] = num_gpus else: kwargs["cpu_offload"] = cpu_offload # kwargs["decode_type"] = "tiled_full" kwargs["decode_type"] = "tiled_spatial" pipeline = klass(**kwargs) def generate_video( prompt, negative_prompt, width, height, num_frames, seed, cfg_scale, num_inference_steps, data_path, multi_cond=None, ): load_model() global dit_path # sigma_schedule should be a list of floats of length (num_inference_steps + 1), # such that sigma_schedule[0] == 1.0 and sigma_schedule[-1] == 0.0 and monotonically decreasing. sigma_schedule = linear_quadratic_schedule(num_inference_steps, 0.025) # cfg_schedule should be a list of floats of length num_inference_steps. # For simplicity, we just use the same cfg scale at all timesteps, # but more optimal schedules may use varying cfg, e.g: # [5.0] * (num_inference_steps // 2) + [4.5] * (num_inference_steps // 2) cfg_schedule = [cfg_scale] * num_inference_steps args = { "height": height, "width": width, "num_frames": num_frames, "sigma_schedule": sigma_schedule, "cfg_schedule": cfg_schedule, "num_inference_steps": num_inference_steps, # We *need* flash attention to batch cfg # and it's only worth doing in a high-memory regime (assume multiple GPUs) "batch_cfg": False, "prompt": prompt, "negative_prompt": negative_prompt, "seed": seed, "data_path": data_path, "condition_image": multi_cond["tensors"], "condition_frame_idx": multi_cond["positions"], "noise_multiplier": multi_cond["noise_multipliers"] } with progress_bar(type="tqdm"): final_frames = pipeline(**args) final_frames = final_frames[0] assert isinstance(final_frames, np.ndarray) assert final_frames.dtype == np.float32 # Create a results directory based on model name and timestamp model_name = os.path.basename(dit_path.split('/')[-2]) checkpoint_name = dit_path.split('/')[-1].split('train_loss')[0] # Use datetime format for timestamp_dir from datetime import datetime timestamp_str = datetime.now().strftime("%Y%m%d_%H%M%S") # Generate descriptive prefix for the result filename positions_str = multi_cond["positions"] cond_position = f"multi_{positions_str}" noise_multiplier = multi_cond["noise_multipliers"] results_base_dir = "./video_test_demos_results" results_dir = os.path.join(results_base_dir, f"{model_name}_{checkpoint_name}_github_user_demo_{cond_position}pos_{num_inference_steps}steps_crop_{noise_multiplier}sigma") os.makedirs(results_dir, exist_ok=True) output_path = os.path.join( results_dir, f"{timestamp_str}.mp4" ) save_video(final_frames, output_path) return output_path from textwrap import dedent @click.command() @click.option("--prompt", default=None, type=str, help="Prompt for generation.") @click.option("--negative_prompt", default="", help="Negative prompt for video generation.") @click.option("--width", default=848, type=int, help="Width of the video.") @click.option("--height", default=480, type=int, help="Height of the video.") @click.option("--num_frames", default=163, type=int, help="Number of frames.") @click.option("--seed", default=1710977262, type=int, help="Random seed.") @click.option("--cfg_scale", default=4.5, type=float, help="CFG Scale.") @click.option("--num_steps", default=64, type=int, help="Number of inference steps.") @click.option("--model_dir", required=True, help="Path to the model directory.") @click.option("--dit_path", required=True, help="Path to the dit model directory.") @click.option("--cpu_offload", is_flag=True, help="Whether to offload model to CPU") @click.option("--data_path", required=True, default="/home/dyvm6xra/dyvm6xrauser02/data/vidgen1m", help="Path to the data directory.") @click.option("--multi_cond", default=None, help="JSON string with multiple condition inputs in format: {pos: [img_dir, prompt_dir, noise_mult]}.") def generate_cli( prompt, negative_prompt, width, height, num_frames, seed, cfg_scale, num_steps, model_dir, dit_path, cpu_offload, data_path, multi_cond ): configure_model(model_dir, dit_path, cpu_offload) config = dict( prune_bottlenecks=[False, False, False, False, False], has_attentions=[False, True, True, True, True], affine=True, bias=True, input_is_conv_1x1=True, padding_mode="replicate", ) # Create VAE encoder encoder = Encoder( in_channels=15, base_channels=64, channel_multipliers=[1, 2, 4, 6], num_res_blocks=[3, 3, 4, 6, 3], latent_dim=12, temporal_reductions=[1, 2, 3], spatial_reductions=[2, 2, 2], **config, ) device = torch.device("cuda:0") encoder = encoder.to(device, memory_format=torch.channels_last_3d) encoder.load_state_dict(load_file(f"{model_dir}/encoder.safetensors")) encoder.eval() # Process multi-conditional inputs # Parse JSON input for multiple conditioning import json conditions = json.loads(multi_cond) # Create structures to store tensors, and noise multipliers latent_tensors = [] noise_multipliers = [] positions = [] # Process each conditioning position for pos, cond_info in conditions.items(): img_dir, noise_mult = cond_info pos = int(pos) positions.append(pos) # Load image and encode from PIL import Image import torchvision.transforms as transforms # Load the image image = Image.open(img_dir) # Crop and resize the image target_ratio = width / height current_ratio = image.width / image.height if current_ratio > target_ratio: new_width = int(image.height * target_ratio) x1 = (image.width - new_width) // 2 image = image.crop((x1, 0, x1 + new_width, image.height)) else: new_height = int(image.width / target_ratio) y1 = (image.height - new_height) // 2 image = image.crop((0, y1, image.width, y1 + new_height)) # Resize the cropped image transform = transforms.Compose([ transforms.Resize((height, width)), transforms.ToTensor(), ]) image_tensor = (transform(image) * 2 - 1).unsqueeze(1).unsqueeze(0) image_tensor = add_fourier_features(image_tensor.to(device)) # Encode image to latent with torch.inference_mode(): with torch.autocast("cuda", dtype=torch.bfloat16): encoder = encoder.to(device) ldist = encoder(image_tensor) image_latent = ldist.sample() # Store the individual latent tensor for this position latent_tensors.append(image_latent[:, :, 0, :, :]) # Store noise multiplier noise_multipliers.append(float(noise_mult) if noise_mult else 0.3) # Clean up to save memory del ldist, image_tensor torch.cuda.empty_cache() # Build multi-condition data structure multi_cond_data = { "tensors": latent_tensors, # Dict of position -> tensor "positions": positions, # Dict of position -> noise multiplier "noise_multipliers": noise_multipliers, # Dict of position -> noise multiplier } prompt = prompt with torch.inference_mode(): output = generate_video( prompt, negative_prompt, width, height, num_frames, seed, cfg_scale, num_steps, data_path, multi_cond=multi_cond_data, ) click.echo(f"Video generated at: {output}") return if __name__ == "__main__": generate_cli()