Spaces:
Paused
Paused
File size: 23,659 Bytes
30f8a30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 |
import getpass
import math
import os
from dataclasses import dataclass
from pathlib import Path
import requests
import torch
from einops import rearrange
from huggingface_hub import hf_hub_download, login
from PIL import ExifTags, Image
from safetensors.torch import load_file as load_sft
from flux.model import Flux, FluxLoraWrapper, FluxParams
from flux.modules.autoencoder import AutoEncoder, AutoEncoderParams
from flux.modules.conditioner import HFEmbedder
CHECKPOINTS_DIR = Path("checkpoints")
BFL_API_KEY = os.getenv("BFL_API_KEY")
def ensure_hf_auth():
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
print("Trying to authenticate to HuggingFace with the HF_TOKEN environment variable.")
try:
login(token=hf_token)
print("Successfully authenticated with HuggingFace using HF_TOKEN")
return True
except Exception as e:
print(f"Warning: Failed to authenticate with HF_TOKEN: {e}")
if os.path.exists(os.path.expanduser("~/.cache/huggingface/token")):
print("Already authenticated with HuggingFace")
return True
return False
def prompt_for_hf_auth():
try:
token = getpass.getpass("HF Token (hidden input): ").strip()
if not token:
print("No token provided. Aborting.")
return False
login(token=token)
print("Successfully authenticated!")
return True
except KeyboardInterrupt:
print("\nAuthentication cancelled by user.")
return False
except Exception as auth_e:
print(f"Authentication failed: {auth_e}")
print("Tip: You can also run 'huggingface-cli login' or set HF_TOKEN environment variable")
return False
def get_checkpoint_path(repo_id: str, filename: str, env_var: str) -> Path:
"""Get the local path for a checkpoint file, downloading if necessary."""
# if os.environ.get(env_var) is not None:
# local_path = os.environ[env_var]
# if os.path.exists(local_path):
# return Path(local_path)
# print(
# f"Trying to load model {repo_id}, {filename} from environment "
# f"variable {env_var}. But file {local_path} does not exist. "
# "Falling back to default location."
# )
# # Create a safe directory name from repo_id
# safe_repo_name = repo_id.replace("/", "_")
# checkpoint_dir = CHECKPOINTS_DIR / safe_repo_name
# checkpoint_dir.mkdir(exist_ok=True)
# local_path = checkpoint_dir / filename
local_path = filename
from mmgp import offload
if False:
print(f"Downloading {filename} from {repo_id} to {local_path}")
try:
ensure_hf_auth()
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=checkpoint_dir)
except Exception as e:
if "gated repo" in str(e).lower() or "restricted" in str(e).lower():
print(f"\nError: Cannot access {repo_id} -- this is a gated repository.")
# Try one more time to authenticate
if prompt_for_hf_auth():
# Retry the download after authentication
print("Retrying download...")
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=checkpoint_dir)
else:
print("Authentication failed or cancelled.")
print("You can also run 'huggingface-cli login' or set HF_TOKEN environment variable")
raise RuntimeError(f"Authentication required for {repo_id}")
else:
raise e
return local_path
def download_onnx_models_for_trt(model_name: str, trt_transformer_precision: str = "bf16") -> str | None:
"""Download ONNX models for TRT to our checkpoints directory"""
onnx_repo_map = {
"flux-dev": "black-forest-labs/FLUX.1-dev-onnx",
"flux-schnell": "black-forest-labs/FLUX.1-schnell-onnx",
"flux-dev-canny": "black-forest-labs/FLUX.1-Canny-dev-onnx",
"flux-dev-depth": "black-forest-labs/FLUX.1-Depth-dev-onnx",
"flux-dev-redux": "black-forest-labs/FLUX.1-Redux-dev-onnx",
"flux-dev-fill": "black-forest-labs/FLUX.1-Fill-dev-onnx",
"flux-dev-kontext": "black-forest-labs/FLUX.1-Kontext-dev-onnx",
}
if model_name not in onnx_repo_map:
return None # No ONNX repository required for this model
repo_id = onnx_repo_map[model_name]
safe_repo_name = repo_id.replace("/", "_")
onnx_dir = CHECKPOINTS_DIR / safe_repo_name
# Map of module names to their ONNX file paths (using specified precision)
onnx_file_map = {
"clip": "clip.opt/model.onnx",
"transformer": f"transformer.opt/{trt_transformer_precision}/model.onnx",
"transformer_data": f"transformer.opt/{trt_transformer_precision}/backbone.onnx_data",
"t5": "t5.opt/model.onnx",
"t5_data": "t5.opt/backbone.onnx_data",
"vae": "vae.opt/model.onnx",
}
# If all files exist locally, return the custom_onnx_paths format
if onnx_dir.exists():
all_files_exist = True
custom_paths = []
for module, onnx_file in onnx_file_map.items():
if module.endswith("_data"):
continue # Skip data files
local_path = onnx_dir / onnx_file
if not local_path.exists():
all_files_exist = False
break
custom_paths.append(f"{module}:{local_path}")
if all_files_exist:
print(f"ONNX models ready in {onnx_dir}")
return ",".join(custom_paths)
# If not all files exist, download them
print(f"Downloading ONNX models from {repo_id} to {onnx_dir}")
print(f"Using transformer precision: {trt_transformer_precision}")
onnx_dir.mkdir(exist_ok=True)
# Download all ONNX files
for module, onnx_file in onnx_file_map.items():
local_path = onnx_dir / onnx_file
if local_path.exists():
continue # Already downloaded
# Create parent directories
local_path.parent.mkdir(parents=True, exist_ok=True)
try:
print(f"Downloading {onnx_file}")
hf_hub_download(repo_id=repo_id, filename=onnx_file, local_dir=onnx_dir)
except Exception as e:
if "does not exist" in str(e).lower() or "not found" in str(e).lower():
continue
elif "gated repo" in str(e).lower() or "restricted" in str(e).lower():
print(f"Cannot access {repo_id} - requires license acceptance")
print("Please follow these steps:")
print(f" 1. Visit: https://huggingface.co/{repo_id}")
print(" 2. Log in to your HuggingFace account")
print(" 3. Accept the license terms and conditions")
print(" 4. Then retry this command")
raise RuntimeError(f"License acceptance required for {model_name}")
else:
# Re-raise other errors
raise
print(f"ONNX models ready in {onnx_dir}")
# Return the custom_onnx_paths format that TRT expects: "module1:path1,module2:path2"
# Note: Only return the actual module paths, not the data file
custom_paths = []
for module, onnx_file in onnx_file_map.items():
if module.endswith("_data"):
continue # Skip the data file in the return paths
full_path = onnx_dir / onnx_file
if full_path.exists():
custom_paths.append(f"{module}:{full_path}")
return ",".join(custom_paths)
def check_onnx_access_for_trt(model_name: str, trt_transformer_precision: str = "bf16") -> str | None:
"""Check ONNX access and download models for TRT - returns ONNX directory path"""
return download_onnx_models_for_trt(model_name, trt_transformer_precision)
def track_usage_via_api(name: str, n=1) -> None:
"""
Track usage of licensed models via the BFL API for commercial licensing compliance.
For more information on licensing BFL's models for commercial use and usage reporting,
see the README.md or visit: https://dashboard.bfl.ai/licensing/subscriptions?showInstructions=true
"""
assert BFL_API_KEY is not None, "BFL_API_KEY is not set"
model_slug_map = {
"flux-dev": "flux-1-dev",
"flux-dev-kontext": "flux-1-kontext-dev",
"flux-dev-fill": "flux-tools",
"flux-dev-depth": "flux-tools",
"flux-dev-canny": "flux-tools",
"flux-dev-canny-lora": "flux-tools",
"flux-dev-depth-lora": "flux-tools",
"flux-dev-redux": "flux-tools",
}
if name not in model_slug_map:
print(f"Skipping tracking usage for {name}, as it cannot be tracked. Please check the model name.")
return
model_slug = model_slug_map[name]
url = f"https://api.bfl.ai/v1/licenses/models/{model_slug}/usage"
headers = {"x-key": BFL_API_KEY, "Content-Type": "application/json"}
payload = {"number_of_generations": n}
response = requests.post(url, headers=headers, json=payload)
if response.status_code != 200:
raise Exception(f"Failed to track usage: {response.status_code} {response.text}")
else:
print(f"Successfully tracked usage for {name} with {n} generations")
def save_image(
nsfw_classifier,
name: str,
output_name: str,
idx: int,
x: torch.Tensor,
add_sampling_metadata: bool,
prompt: str,
nsfw_threshold: float = 0.85,
track_usage: bool = False,
) -> int:
fn = output_name.format(idx=idx)
print(f"Saving {fn}")
# bring into PIL format and save
x = x.clamp(-1, 1)
x = rearrange(x[0], "c h w -> h w c")
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
if nsfw_classifier is not None:
nsfw_score = [x["score"] for x in nsfw_classifier(img) if x["label"] == "nsfw"][0]
else:
nsfw_score = nsfw_threshold - 1.0
if nsfw_score < nsfw_threshold:
exif_data = Image.Exif()
if name in ["flux-dev", "flux-schnell"]:
exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux"
else:
exif_data[ExifTags.Base.Software] = "AI generated;img2img;flux"
exif_data[ExifTags.Base.Make] = "Black Forest Labs"
exif_data[ExifTags.Base.Model] = name
if add_sampling_metadata:
exif_data[ExifTags.Base.ImageDescription] = prompt
img.save(fn, exif=exif_data, quality=95, subsampling=0)
if track_usage:
track_usage_via_api(name, 1)
idx += 1
else:
print("Your generated image may contain NSFW content.")
return idx
@dataclass
class ModelSpec:
params: FluxParams
ae_params: AutoEncoderParams
repo_id: str
repo_flow: str
repo_ae: str
lora_repo_id: str | None = None
lora_filename: str | None = None
configs = {
"flux-dev": ModelSpec(
repo_id="",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
params=FluxParams(
in_channels=64,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-schnell": ModelSpec(
repo_id="black-forest-labs/FLUX.1-schnell",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
params=FluxParams(
in_channels=64,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=False,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-dev-canny": ModelSpec(
repo_id="black-forest-labs/FLUX.1-Canny-dev",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
params=FluxParams(
in_channels=128,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-dev-canny-lora": ModelSpec(
repo_id="black-forest-labs/FLUX.1-dev",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
lora_repo_id="black-forest-labs/FLUX.1-Canny-dev-lora",
lora_filename="flux1-canny-dev-lora.safetensors",
params=FluxParams(
in_channels=128,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-dev-depth": ModelSpec(
repo_id="black-forest-labs/FLUX.1-Depth-dev",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
params=FluxParams(
in_channels=128,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-dev-depth-lora": ModelSpec(
repo_id="black-forest-labs/FLUX.1-dev",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
lora_repo_id="black-forest-labs/FLUX.1-Depth-dev-lora",
lora_filename="flux1-depth-dev-lora.safetensors",
params=FluxParams(
in_channels=128,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-dev-redux": ModelSpec(
repo_id="black-forest-labs/FLUX.1-Redux-dev",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
params=FluxParams(
in_channels=64,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-dev-fill": ModelSpec(
repo_id="black-forest-labs/FLUX.1-Fill-dev",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
params=FluxParams(
in_channels=384,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
"flux-dev-kontext": ModelSpec(
repo_id="black-forest-labs/FLUX.1-Kontext-dev",
repo_flow="",
repo_ae="ckpts/flux_vae.safetensors",
params=FluxParams(
in_channels=64,
out_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
}
PREFERED_KONTEXT_RESOLUTIONS = [
(672, 1568),
(688, 1504),
(720, 1456),
(752, 1392),
(800, 1328),
(832, 1248),
(880, 1184),
(944, 1104),
(1024, 1024),
(1104, 944),
(1184, 880),
(1248, 832),
(1328, 800),
(1392, 752),
(1456, 720),
(1504, 688),
(1568, 672),
]
def aspect_ratio_to_height_width(aspect_ratio: str, area: int = 1024**2) -> tuple[int, int]:
width = float(aspect_ratio.split(":")[0])
height = float(aspect_ratio.split(":")[1])
ratio = width / height
width = round(math.sqrt(area * ratio))
height = round(math.sqrt(area / ratio))
return 16 * (width // 16), 16 * (height // 16)
def print_load_warning(missing: list[str], unexpected: list[str]) -> None:
if len(missing) > 0 and len(unexpected) > 0:
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
print("\n" + "-" * 79 + "\n")
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
elif len(missing) > 0:
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
elif len(unexpected) > 0:
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
def load_flow_model(name: str, model_filename, device: str | torch.device = "cuda", verbose: bool = True) -> Flux:
# Loading Flux
config = configs[name]
ckpt_path = model_filename #config.repo_flow
with torch.device("meta"):
if config.lora_repo_id is not None and config.lora_filename is not None:
model = FluxLoraWrapper(params=config.params).to(torch.bfloat16)
else:
model = Flux(config.params).to(torch.bfloat16)
# print(f"Loading checkpoint: {ckpt_path}")
from mmgp import offload
offload.load_model_data(model, model_filename )
# # load_sft doesn't support torch.device
# sd = load_sft(ckpt_path, device=str(device))
# sd = optionally_expand_state_dict(model, sd)
# missing, unexpected = model.load_state_dict(sd, strict=False, assign=True)
# if verbose:
# print_load_warning(missing, unexpected)
# if config.lora_repo_id is not None and config.lora_filename is not None:
# print("Loading LoRA")
# lora_path = str(get_checkpoint_path(config.lora_repo_id, config.lora_filename, "FLUX_LORA"))
# lora_sd = load_sft(lora_path, device=str(device))
# # loading the lora params + overwriting scale values in the norms
# missing, unexpected = model.load_state_dict(lora_sd, strict=False, assign=True)
# if verbose:
# print_load_warning(missing, unexpected)
return model
def load_t5(device: str | torch.device = "cuda", text_encoder_filename = None, max_length: int = 512) -> HFEmbedder:
# max length 64, 128, 256 and 512 should work (if your sequence is short enough)
return HFEmbedder("",text_encoder_filename, max_length=max_length, torch_dtype=torch.bfloat16).to(device)
def load_clip(device: str | torch.device = "cuda") -> HFEmbedder:
return HFEmbedder("ckpts/clip_vit_large_patch14", "", max_length=77, torch_dtype=torch.bfloat16, is_clip =True).to(device)
def load_ae(name: str, device: str | torch.device = "cuda") -> AutoEncoder:
config = configs[name]
ckpt_path = str(get_checkpoint_path(config.repo_id, config.repo_ae, "FLUX_AE"))
# Loading the autoencoder
with torch.device("meta"):
ae = AutoEncoder(config.ae_params)
# print(f"Loading AE checkpoint: {ckpt_path}")
sd = load_sft(ckpt_path, device=str(device))
missing, unexpected = ae.load_state_dict(sd, strict=False, assign=True)
print_load_warning(missing, unexpected)
return ae
def optionally_expand_state_dict(model: torch.nn.Module, state_dict: dict) -> dict:
"""
Optionally expand the state dict to match the model's parameters shapes.
"""
for name, param in model.named_parameters():
if name in state_dict:
if state_dict[name].shape != param.shape:
print(
f"Expanding '{name}' with shape {state_dict[name].shape} to model parameter with shape {param.shape}."
)
# expand with zeros:
expanded_state_dict_weight = torch.zeros_like(param, device=state_dict[name].device)
slices = tuple(slice(0, dim) for dim in state_dict[name].shape)
expanded_state_dict_weight[slices] = state_dict[name]
state_dict[name] = expanded_state_dict_weight
return state_dict
|