Spaces:
Paused
Paused
File size: 18,675 Bytes
30f8a30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import os
import cv2
import torch
import numpy as np
from . import util
from .wholebody import Wholebody, HWC3, resize_image
from PIL import Image
import onnxruntime as ort
from concurrent.futures import ThreadPoolExecutor
import threading
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
def convert_to_numpy(image):
if isinstance(image, Image.Image):
image = np.array(image)
elif isinstance(image, torch.Tensor):
image = image.detach().cpu().numpy()
elif isinstance(image, np.ndarray):
image = image.copy()
else:
raise f'Unsurpport datatype{type(image)}, only surpport np.ndarray, torch.Tensor, Pillow Image.'
return image
def draw_pose(pose, H, W, use_hand=False, use_body=False, use_face=False):
bodies = pose['bodies']
faces = pose['faces']
hands = pose['hands']
candidate = bodies['candidate']
subset = bodies['subset']
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
if use_body:
canvas = util.draw_bodypose(canvas, candidate, subset)
if use_hand:
canvas = util.draw_handpose(canvas, hands)
if use_face:
canvas = util.draw_facepose(canvas, faces)
return canvas
class OptimizedWholebody:
"""Optimized version of Wholebody for faster serial processing"""
def __init__(self, onnx_det, onnx_pose, device='cuda:0'):
providers = ['CPUExecutionProvider'] if device == 'cpu' else ['CUDAExecutionProvider']
self.session_det = ort.InferenceSession(path_or_bytes=onnx_det, providers=providers)
self.session_pose = ort.InferenceSession(path_or_bytes=onnx_pose, providers=providers)
self.device = device
# Pre-allocate session options for better performance
self.session_det.set_providers(providers)
self.session_pose.set_providers(providers)
# Get input names once to avoid repeated lookups
self.det_input_name = self.session_det.get_inputs()[0].name
self.pose_input_name = self.session_pose.get_inputs()[0].name
self.pose_output_names = [out.name for out in self.session_pose.get_outputs()]
def __call__(self, ori_img):
from .onnxdet import inference_detector
from .onnxpose import inference_pose
det_result = inference_detector(self.session_det, ori_img)
keypoints, scores = inference_pose(self.session_pose, det_result, ori_img)
keypoints_info = np.concatenate(
(keypoints, scores[..., None]), axis=-1)
# compute neck joint
neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
# neck score when visualizing pred
neck[:, 2:4] = np.logical_and(
keypoints_info[:, 5, 2:4] > 0.3,
keypoints_info[:, 6, 2:4] > 0.3).astype(int)
new_keypoints_info = np.insert(
keypoints_info, 17, neck, axis=1)
mmpose_idx = [
17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3
]
openpose_idx = [
1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17
]
new_keypoints_info[:, openpose_idx] = \
new_keypoints_info[:, mmpose_idx]
keypoints_info = new_keypoints_info
keypoints, scores = keypoints_info[
..., :2], keypoints_info[..., 2]
return keypoints, scores, det_result
class PoseAnnotator:
def __init__(self, cfg, device=None):
onnx_det = cfg['DETECTION_MODEL']
onnx_pose = cfg['POSE_MODEL']
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device
self.pose_estimation = Wholebody(onnx_det, onnx_pose, device=self.device)
self.resize_size = cfg.get("RESIZE_SIZE", 1024)
self.use_body = cfg.get('USE_BODY', True)
self.use_face = cfg.get('USE_FACE', True)
self.use_hand = cfg.get('USE_HAND', True)
@torch.no_grad()
@torch.inference_mode
def forward(self, image):
image = convert_to_numpy(image)
input_image = HWC3(image[..., ::-1])
return self.process(resize_image(input_image, self.resize_size), image.shape[:2])
def process(self, ori_img, ori_shape):
ori_h, ori_w = ori_shape
ori_img = ori_img.copy()
H, W, C = ori_img.shape
with torch.no_grad():
candidate, subset, det_result = self.pose_estimation(ori_img)
if len(candidate) == 0:
# No detections - return empty results
empty_ret_data = {}
if self.use_body:
empty_ret_data["detected_map_body"] = np.zeros((ori_h, ori_w, 3), dtype=np.uint8)
if self.use_face:
empty_ret_data["detected_map_face"] = np.zeros((ori_h, ori_w, 3), dtype=np.uint8)
if self.use_body and self.use_face:
empty_ret_data["detected_map_bodyface"] = np.zeros((ori_h, ori_w, 3), dtype=np.uint8)
if self.use_hand and self.use_body and self.use_face:
empty_ret_data["detected_map_handbodyface"] = np.zeros((ori_h, ori_w, 3), dtype=np.uint8)
return empty_ret_data, np.array([])
nums, keys, locs = candidate.shape
candidate[..., 0] /= float(W)
candidate[..., 1] /= float(H)
body = candidate[:, :18].copy()
body = body.reshape(nums * 18, locs)
score = subset[:, :18]
for i in range(len(score)):
for j in range(len(score[i])):
if score[i][j] > 0.3:
score[i][j] = int(18 * i + j)
else:
score[i][j] = -1
un_visible = subset < 0.3
candidate[un_visible] = -1
foot = candidate[:, 18:24]
faces = candidate[:, 24:92]
hands = candidate[:, 92:113]
hands = np.vstack([hands, candidate[:, 113:]])
bodies = dict(candidate=body, subset=score)
pose = dict(bodies=bodies, hands=hands, faces=faces)
ret_data = {}
if self.use_body:
detected_map_body = draw_pose(pose, H, W, use_body=True)
detected_map_body = cv2.resize(detected_map_body[..., ::-1], (ori_w, ori_h),
interpolation=cv2.INTER_LANCZOS4 if ori_h * ori_w > H * W else cv2.INTER_AREA)
ret_data["detected_map_body"] = detected_map_body
if self.use_face:
detected_map_face = draw_pose(pose, H, W, use_face=True)
detected_map_face = cv2.resize(detected_map_face[..., ::-1], (ori_w, ori_h),
interpolation=cv2.INTER_LANCZOS4 if ori_h * ori_w > H * W else cv2.INTER_AREA)
ret_data["detected_map_face"] = detected_map_face
if self.use_body and self.use_face:
detected_map_bodyface = draw_pose(pose, H, W, use_body=True, use_face=True)
detected_map_bodyface = cv2.resize(detected_map_bodyface[..., ::-1], (ori_w, ori_h),
interpolation=cv2.INTER_LANCZOS4 if ori_h * ori_w > H * W else cv2.INTER_AREA)
ret_data["detected_map_bodyface"] = detected_map_bodyface
if self.use_hand and self.use_body and self.use_face:
detected_map_handbodyface = draw_pose(pose, H, W, use_hand=True, use_body=True, use_face=True)
detected_map_handbodyface = cv2.resize(detected_map_handbodyface[..., ::-1], (ori_w, ori_h),
interpolation=cv2.INTER_LANCZOS4 if ori_h * ori_w > H * W else cv2.INTER_AREA)
ret_data["detected_map_handbodyface"] = detected_map_handbodyface
# convert_size
if det_result.shape[0] > 0:
w_ratio, h_ratio = ori_w / W, ori_h / H
det_result[..., ::2] *= h_ratio
det_result[..., 1::2] *= w_ratio
det_result = det_result.astype(np.int32)
return ret_data, det_result
class OptimizedPoseAnnotator(PoseAnnotator):
"""Optimized version using improved Wholebody class"""
def __init__(self, cfg, device=None):
onnx_det = cfg['DETECTION_MODEL']
onnx_pose = cfg['POSE_MODEL']
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device
self.pose_estimation = OptimizedWholebody(onnx_det, onnx_pose, device=self.device)
self.resize_size = cfg.get("RESIZE_SIZE", 1024)
self.use_body = cfg.get('USE_BODY', True)
self.use_face = cfg.get('USE_FACE', True)
self.use_hand = cfg.get('USE_HAND', True)
class PoseBodyFaceAnnotator(PoseAnnotator):
def __init__(self, cfg):
super().__init__(cfg)
self.use_body, self.use_face, self.use_hand = True, True, False
@torch.no_grad()
@torch.inference_mode
def forward(self, image):
ret_data, det_result = super().forward(image)
return ret_data['detected_map_bodyface']
class OptimizedPoseBodyFaceVideoAnnotator:
"""Optimized video annotator with multiple optimization strategies"""
def __init__(self, cfg, num_workers=2, chunk_size=8):
self.cfg = cfg
self.num_workers = num_workers
self.chunk_size = chunk_size
self.use_body, self.use_face, self.use_hand = True, True, True
# Initialize one annotator per worker to avoid ONNX session conflicts
self.annotators = []
for _ in range(num_workers):
annotator = OptimizedPoseAnnotator(cfg)
annotator.use_body, annotator.use_face, annotator.use_hand = True, True, True
self.annotators.append(annotator)
self._current_worker = 0
self._worker_lock = threading.Lock()
def _get_annotator(self):
"""Get next available annotator in round-robin fashion"""
with self._worker_lock:
annotator = self.annotators[self._current_worker]
self._current_worker = (self._current_worker + 1) % len(self.annotators)
return annotator
def _process_single_frame(self, frame_data):
"""Process a single frame with error handling"""
frame, frame_idx = frame_data
try:
annotator = self._get_annotator()
# Convert frame
frame = convert_to_numpy(frame)
input_image = HWC3(frame[..., ::-1])
resized_image = resize_image(input_image, annotator.resize_size)
# Process
ret_data, _ = annotator.process(resized_image, frame.shape[:2])
if 'detected_map_handbodyface' in ret_data:
return frame_idx, ret_data['detected_map_handbodyface']
else:
# Create empty frame if no detection
h, w = frame.shape[:2]
return frame_idx, np.zeros((h, w, 3), dtype=np.uint8)
except Exception as e:
print(f"Error processing frame {frame_idx}: {e}")
# Return empty frame on error
h, w = frame.shape[:2] if hasattr(frame, 'shape') else (480, 640)
return frame_idx, np.zeros((h, w, 3), dtype=np.uint8)
def forward(self, frames):
"""Process video frames with optimizations"""
if len(frames) == 0:
return []
# For small number of frames, use serial processing to avoid threading overhead
if len(frames) <= 4:
annotator = self.annotators[0]
ret_frames = []
for frame in frames:
frame = convert_to_numpy(frame)
input_image = HWC3(frame[..., ::-1])
resized_image = resize_image(input_image, annotator.resize_size)
ret_data, _ = annotator.process(resized_image, frame.shape[:2])
if 'detected_map_handbodyface' in ret_data:
ret_frames.append(ret_data['detected_map_handbodyface'])
else:
h, w = frame.shape[:2]
ret_frames.append(np.zeros((h, w, 3), dtype=np.uint8))
return ret_frames
# For larger videos, use parallel processing
frame_data = [(frame, idx) for idx, frame in enumerate(frames)]
results = [None] * len(frames)
# Process in chunks to manage memory
for chunk_start in range(0, len(frame_data), self.chunk_size * self.num_workers):
chunk_end = min(chunk_start + self.chunk_size * self.num_workers, len(frame_data))
chunk_data = frame_data[chunk_start:chunk_end]
with ThreadPoolExecutor(max_workers=self.num_workers) as executor:
chunk_results = list(executor.map(self._process_single_frame, chunk_data))
# Store results in correct order
for frame_idx, result in chunk_results:
results[frame_idx] = result
return results
class OptimizedPoseBodyFaceHandVideoAnnotator:
"""Optimized video annotator that includes hands, body, and face"""
def __init__(self, cfg, num_workers=2, chunk_size=8):
self.cfg = cfg
self.num_workers = num_workers
self.chunk_size = chunk_size
self.use_body, self.use_face, self.use_hand = True, True, True # Enable hands
# Initialize one annotator per worker to avoid ONNX session conflicts
self.annotators = []
for _ in range(num_workers):
annotator = OptimizedPoseAnnotator(cfg)
annotator.use_body, annotator.use_face, annotator.use_hand = True, True, True
self.annotators.append(annotator)
self._current_worker = 0
self._worker_lock = threading.Lock()
def _get_annotator(self):
"""Get next available annotator in round-robin fashion"""
with self._worker_lock:
annotator = self.annotators[self._current_worker]
self._current_worker = (self._current_worker + 1) % len(self.annotators)
return annotator
def _process_single_frame(self, frame_data):
"""Process a single frame with error handling"""
frame, frame_idx = frame_data
try:
annotator = self._get_annotator()
# Convert frame
frame = convert_to_numpy(frame)
input_image = HWC3(frame[..., ::-1])
resized_image = resize_image(input_image, annotator.resize_size)
# Process
ret_data, _ = annotator.process(resized_image, frame.shape[:2])
if 'detected_map_handbodyface' in ret_data:
return frame_idx, ret_data['detected_map_handbodyface']
else:
# Create empty frame if no detection
h, w = frame.shape[:2]
return frame_idx, np.zeros((h, w, 3), dtype=np.uint8)
except Exception as e:
print(f"Error processing frame {frame_idx}: {e}")
# Return empty frame on error
h, w = frame.shape[:2] if hasattr(frame, 'shape') else (480, 640)
return frame_idx, np.zeros((h, w, 3), dtype=np.uint8)
def forward(self, frames):
"""Process video frames with optimizations"""
if len(frames) == 0:
return []
# For small number of frames, use serial processing to avoid threading overhead
if len(frames) <= 4:
annotator = self.annotators[0]
ret_frames = []
for frame in frames:
frame = convert_to_numpy(frame)
input_image = HWC3(frame[..., ::-1])
resized_image = resize_image(input_image, annotator.resize_size)
ret_data, _ = annotator.process(resized_image, frame.shape[:2])
if 'detected_map_handbodyface' in ret_data:
ret_frames.append(ret_data['detected_map_handbodyface'])
else:
h, w = frame.shape[:2]
ret_frames.append(np.zeros((h, w, 3), dtype=np.uint8))
return ret_frames
# For larger videos, use parallel processing
frame_data = [(frame, idx) for idx, frame in enumerate(frames)]
results = [None] * len(frames)
# Process in chunks to manage memory
for chunk_start in range(0, len(frame_data), self.chunk_size * self.num_workers):
chunk_end = min(chunk_start + self.chunk_size * self.num_workers, len(frame_data))
chunk_data = frame_data[chunk_start:chunk_end]
with ThreadPoolExecutor(max_workers=self.num_workers) as executor:
chunk_results = list(executor.map(self._process_single_frame, chunk_data))
# Store results in correct order
for frame_idx, result in chunk_results:
results[frame_idx] = result
return results
# Choose which version you want to use:
# Option 1: Body + Face only (original behavior)
class PoseBodyFaceVideoAnnotator(OptimizedPoseBodyFaceVideoAnnotator):
"""Backward compatible class name - Body and Face only"""
# Option 2: Body + Face + Hands (if you want hands)
class PoseBodyFaceHandVideoAnnotator(OptimizedPoseBodyFaceHandVideoAnnotator):
"""Video annotator with hands, body, and face"""
def __init__(self, cfg):
super().__init__(cfg, num_workers=2, chunk_size=4)
# Keep the existing utility functions
import imageio
def save_one_video(file_path, videos, fps=8, quality=8, macro_block_size=None):
try:
video_writer = imageio.get_writer(file_path, fps=fps, codec='libx264', quality=quality, macro_block_size=macro_block_size)
for frame in videos:
video_writer.append_data(frame)
video_writer.close()
return True
except Exception as e:
print(f"Video save error: {e}")
return False
def get_frames(video_path):
frames = []
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
print("video fps: " + str(fps))
i = 0
while cap.isOpened():
ret, frame = cap.read()
if ret == False:
break
frames.append(frame)
i += 1
cap.release()
cv2.destroyAllWindows()
return frames, fps |