File size: 7,746 Bytes
30f8a30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
from attr import attr
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

class CustomSTFT(nn.Module):
    """
    STFT/iSTFT without unfold/complex ops, using conv1d and conv_transpose1d.

    - forward STFT => Real-part conv1d + Imag-part conv1d
    - inverse STFT => Real-part conv_transpose1d + Imag-part conv_transpose1d + sum
    - avoids F.unfold, so easier to export to ONNX
    - uses replicate or constant padding for 'center=True' to approximate 'reflect' 
      (reflect is not supported for dynamic shapes in ONNX)
    """

    def __init__(
        self,
        filter_length=800,
        hop_length=200,
        win_length=800,
        window="hann",
        center=True,
        pad_mode="replicate",  # or 'constant'
    ):
        super().__init__()
        self.filter_length = filter_length
        self.hop_length = hop_length
        self.win_length = win_length
        self.n_fft = filter_length
        self.center = center
        self.pad_mode = pad_mode

        # Number of frequency bins for real-valued STFT with onesided=True
        self.freq_bins = self.n_fft // 2 + 1

        # Build window
        assert window == 'hann', window
        window_tensor = torch.hann_window(win_length, periodic=True, dtype=torch.float32)
        if self.win_length < self.n_fft:
            # Zero-pad up to n_fft
            extra = self.n_fft - self.win_length
            window_tensor = F.pad(window_tensor, (0, extra))
        elif self.win_length > self.n_fft:
            window_tensor = window_tensor[: self.n_fft]
        self.register_buffer("window", window_tensor)

        # Precompute forward DFT (real, imag)
        # PyTorch stft uses e^{-j 2 pi k n / N} => real=cos(...), imag=-sin(...)
        n = np.arange(self.n_fft)
        k = np.arange(self.freq_bins)
        angle = 2 * np.pi * np.outer(k, n) / self.n_fft  # shape (freq_bins, n_fft)
        dft_real = np.cos(angle)
        dft_imag = -np.sin(angle)  # note negative sign

        # Combine window and dft => shape (freq_bins, filter_length)
        # We'll make 2 conv weight tensors of shape (freq_bins, 1, filter_length).
        forward_window = window_tensor.numpy()  # shape (n_fft,)
        forward_real = dft_real * forward_window  # (freq_bins, n_fft)
        forward_imag = dft_imag * forward_window

        # Convert to PyTorch
        forward_real_torch = torch.from_numpy(forward_real).float()
        forward_imag_torch = torch.from_numpy(forward_imag).float()

        # Register as Conv1d weight => (out_channels, in_channels, kernel_size)
        # out_channels = freq_bins, in_channels=1, kernel_size=n_fft
        self.register_buffer(
            "weight_forward_real", forward_real_torch.unsqueeze(1)
        )
        self.register_buffer(
            "weight_forward_imag", forward_imag_torch.unsqueeze(1)
        )

        # Precompute inverse DFT
        # Real iFFT formula => scale = 1/n_fft, doubling for bins 1..freq_bins-2 if n_fft even, etc.
        # For simplicity, we won't do the "DC/nyquist not doubled" approach here. 
        # If you want perfect real iSTFT, you can add that logic. 
        # This version just yields good approximate reconstruction with Hann + typical overlap.
        inv_scale = 1.0 / self.n_fft
        n = np.arange(self.n_fft)
        angle_t = 2 * np.pi * np.outer(n, k) / self.n_fft  # shape (n_fft, freq_bins)
        idft_cos = np.cos(angle_t).T  # => (freq_bins, n_fft)
        idft_sin = np.sin(angle_t).T  # => (freq_bins, n_fft)

        # Multiply by window again for typical overlap-add
        # We also incorporate the scale factor 1/n_fft
        inv_window = window_tensor.numpy() * inv_scale
        backward_real = idft_cos * inv_window  # (freq_bins, n_fft)
        backward_imag = idft_sin * inv_window

        # We'll implement iSTFT as real+imag conv_transpose with stride=hop.
        self.register_buffer(
            "weight_backward_real", torch.from_numpy(backward_real).float().unsqueeze(1)
        )
        self.register_buffer(
            "weight_backward_imag", torch.from_numpy(backward_imag).float().unsqueeze(1)
        )
        


    def transform(self, waveform: torch.Tensor):
        """
        Forward STFT => returns magnitude, phase
        Output shape => (batch, freq_bins, frames)
        """
        # waveform shape => (B, T).  conv1d expects (B, 1, T).
        # Optional center pad
        if self.center:
            pad_len = self.n_fft // 2
            waveform = F.pad(waveform, (pad_len, pad_len), mode=self.pad_mode)

        x = waveform.unsqueeze(1)  # => (B, 1, T)
        # Convolution to get real part => shape (B, freq_bins, frames)
        real_out = F.conv1d(
            x,
            self.weight_forward_real,
            bias=None,
            stride=self.hop_length,
            padding=0,
        )
        # Imag part
        imag_out = F.conv1d(
            x,
            self.weight_forward_imag,
            bias=None,
            stride=self.hop_length,
            padding=0,
        )

        # magnitude, phase
        magnitude = torch.sqrt(real_out**2 + imag_out**2 + 1e-14)
        phase = torch.atan2(imag_out, real_out)
        # Handle the case where imag_out is 0 and real_out is negative to correct ONNX atan2 to match PyTorch
        # In this case, PyTorch returns pi, ONNX returns -pi
        correction_mask = (imag_out == 0) & (real_out < 0)
        phase[correction_mask] = torch.pi
        return magnitude, phase


    def inverse(self, magnitude: torch.Tensor, phase: torch.Tensor, length=None):
        """
        Inverse STFT => returns waveform shape (B, T).
        """
        # magnitude, phase => (B, freq_bins, frames)
        # Re-create real/imag => shape (B, freq_bins, frames)
        real_part = magnitude * torch.cos(phase)
        imag_part = magnitude * torch.sin(phase)

        # conv_transpose wants shape (B, freq_bins, frames). We'll treat "frames" as time dimension
        # so we do (B, freq_bins, frames) => (B, freq_bins, frames)
        # But PyTorch conv_transpose1d expects (B, in_channels, input_length)
        real_part = real_part  # (B, freq_bins, frames)
        imag_part = imag_part

        # real iSTFT => convolve with "backward_real", "backward_imag", and sum
        # We'll do 2 conv_transpose calls, each giving (B, 1, time),
        # then add them => (B, 1, time).
        real_rec = F.conv_transpose1d(
            real_part,
            self.weight_backward_real,  # shape (freq_bins, 1, filter_length)
            bias=None,
            stride=self.hop_length,
            padding=0,
        )
        imag_rec = F.conv_transpose1d(
            imag_part,
            self.weight_backward_imag,
            bias=None,
            stride=self.hop_length,
            padding=0,
        )
        # sum => (B, 1, time)
        waveform = real_rec - imag_rec  # typical real iFFT has minus for imaginary part

        # If we used "center=True" in forward, we should remove pad
        if self.center:
            pad_len = self.n_fft // 2
            # Because of transposed convolution, total length might have extra samples
            # We remove `pad_len` from start & end if possible
            waveform = waveform[..., pad_len:-pad_len]

        # If a specific length is desired, clamp
        if length is not None:
            waveform = waveform[..., :length]

        # shape => (B, T)
        return waveform

    def forward(self, x: torch.Tensor):
        """
        Full STFT -> iSTFT pass: returns time-domain reconstruction.
        Same interface as your original code.
        """
        mag, phase = self.transform(x)
        return self.inverse(mag, phase, length=x.shape[-1])