Spaces:
Paused
Paused
File size: 16,141 Bytes
30f8a30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
import random
import os
import torch
import torch.distributed as dist
from PIL import Image
import subprocess
import torchvision.transforms as transforms
import torch.nn.functional as F
import torch.nn as nn
import wan
from wan.configs import SIZE_CONFIGS, SUPPORTED_SIZES, WAN_CONFIGS
from wan.utils.utils import cache_image, cache_video, str2bool
# from wan.utils.multitalk_utils import save_video_ffmpeg
# from .kokoro import KPipeline
from transformers import Wav2Vec2FeatureExtractor
from .wav2vec2 import Wav2Vec2Model
import librosa
import pyloudnorm as pyln
import numpy as np
from einops import rearrange
import soundfile as sf
import re
import math
def custom_init(device, wav2vec):
audio_encoder = Wav2Vec2Model.from_pretrained(wav2vec, local_files_only=True).to(device)
audio_encoder.feature_extractor._freeze_parameters()
wav2vec_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(wav2vec, local_files_only=True)
return wav2vec_feature_extractor, audio_encoder
def loudness_norm(audio_array, sr=16000, lufs=-23):
meter = pyln.Meter(sr)
loudness = meter.integrated_loudness(audio_array)
if abs(loudness) > 100:
return audio_array
normalized_audio = pyln.normalize.loudness(audio_array, loudness, lufs)
return normalized_audio
def get_embedding(speech_array, wav2vec_feature_extractor, audio_encoder, sr=16000, device='cpu', fps = 25):
audio_duration = len(speech_array) / sr
video_length = audio_duration * fps
# wav2vec_feature_extractor
audio_feature = np.squeeze(
wav2vec_feature_extractor(speech_array, sampling_rate=sr).input_values
)
audio_feature = torch.from_numpy(audio_feature).float().to(device=device)
audio_feature = audio_feature.unsqueeze(0)
# audio encoder
with torch.no_grad():
embeddings = audio_encoder(audio_feature, seq_len=int(video_length), output_hidden_states=True)
if len(embeddings) == 0:
print("Fail to extract audio embedding")
return None
audio_emb = torch.stack(embeddings.hidden_states[1:], dim=1).squeeze(0)
audio_emb = rearrange(audio_emb, "b s d -> s b d")
audio_emb = audio_emb.cpu().detach()
return audio_emb
def audio_prepare_single(audio_path, sample_rate=16000, duration = 0):
ext = os.path.splitext(audio_path)[1].lower()
if ext in ['.mp4', '.mov', '.avi', '.mkv']:
human_speech_array = extract_audio_from_video(audio_path, sample_rate)
return human_speech_array
else:
human_speech_array, sr = librosa.load(audio_path, duration=duration, sr=sample_rate)
human_speech_array = loudness_norm(human_speech_array, sr)
return human_speech_array
def audio_prepare_multi(left_path, right_path, audio_type = "add", sample_rate=16000, duration = 0, pad = 0):
if not (left_path==None or right_path==None):
human_speech_array1 = audio_prepare_single(left_path, duration = duration)
human_speech_array2 = audio_prepare_single(right_path, duration = duration)
elif left_path==None:
human_speech_array2 = audio_prepare_single(right_path, duration = duration)
human_speech_array1 = np.zeros(human_speech_array2.shape[0])
elif right_path==None:
human_speech_array1 = audio_prepare_single(left_path, duration = duration)
human_speech_array2 = np.zeros(human_speech_array1.shape[0])
if audio_type=='para':
new_human_speech1 = human_speech_array1
new_human_speech2 = human_speech_array2
elif audio_type=='add':
new_human_speech1 = np.concatenate([human_speech_array1[: human_speech_array1.shape[0]], np.zeros(human_speech_array2.shape[0])])
new_human_speech2 = np.concatenate([np.zeros(human_speech_array1.shape[0]), human_speech_array2[:human_speech_array2.shape[0]]])
#dont include the padding on the summed audio which is used to build the output audio track
sum_human_speechs = new_human_speech1 + new_human_speech2
if pad > 0:
new_human_speech1 = np.concatenate([np.zeros(pad), new_human_speech1])
new_human_speech2 = np.concatenate([np.zeros(pad), new_human_speech2])
return new_human_speech1, new_human_speech2, sum_human_speechs
def process_tts_single(text, save_dir, voice1):
s1_sentences = []
pipeline = KPipeline(lang_code='a', repo_id='weights/Kokoro-82M')
voice_tensor = torch.load(voice1, weights_only=True)
generator = pipeline(
text, voice=voice_tensor, # <= change voice here
speed=1, split_pattern=r'\n+'
)
audios = []
for i, (gs, ps, audio) in enumerate(generator):
audios.append(audio)
audios = torch.concat(audios, dim=0)
s1_sentences.append(audios)
s1_sentences = torch.concat(s1_sentences, dim=0)
save_path1 =f'{save_dir}/s1.wav'
sf.write(save_path1, s1_sentences, 24000) # save each audio file
s1, _ = librosa.load(save_path1, sr=16000)
return s1, save_path1
def process_tts_multi(text, save_dir, voice1, voice2):
pattern = r'\(s(\d+)\)\s*(.*?)(?=\s*\(s\d+\)|$)'
matches = re.findall(pattern, text, re.DOTALL)
s1_sentences = []
s2_sentences = []
pipeline = KPipeline(lang_code='a', repo_id='weights/Kokoro-82M')
for idx, (speaker, content) in enumerate(matches):
if speaker == '1':
voice_tensor = torch.load(voice1, weights_only=True)
generator = pipeline(
content, voice=voice_tensor, # <= change voice here
speed=1, split_pattern=r'\n+'
)
audios = []
for i, (gs, ps, audio) in enumerate(generator):
audios.append(audio)
audios = torch.concat(audios, dim=0)
s1_sentences.append(audios)
s2_sentences.append(torch.zeros_like(audios))
elif speaker == '2':
voice_tensor = torch.load(voice2, weights_only=True)
generator = pipeline(
content, voice=voice_tensor, # <= change voice here
speed=1, split_pattern=r'\n+'
)
audios = []
for i, (gs, ps, audio) in enumerate(generator):
audios.append(audio)
audios = torch.concat(audios, dim=0)
s2_sentences.append(audios)
s1_sentences.append(torch.zeros_like(audios))
s1_sentences = torch.concat(s1_sentences, dim=0)
s2_sentences = torch.concat(s2_sentences, dim=0)
sum_sentences = s1_sentences + s2_sentences
save_path1 =f'{save_dir}/s1.wav'
save_path2 =f'{save_dir}/s2.wav'
save_path_sum = f'{save_dir}/sum.wav'
sf.write(save_path1, s1_sentences, 24000) # save each audio file
sf.write(save_path2, s2_sentences, 24000)
sf.write(save_path_sum, sum_sentences, 24000)
s1, _ = librosa.load(save_path1, sr=16000)
s2, _ = librosa.load(save_path2, sr=16000)
# sum, _ = librosa.load(save_path_sum, sr=16000)
return s1, s2, save_path_sum
def get_full_audio_embeddings(audio_guide1 = None, audio_guide2 = None, combination_type ="add", num_frames = 0, fps = 25, sr = 16000, padded_frames_for_embeddings = 0):
wav2vec_feature_extractor, audio_encoder= custom_init('cpu', "ckpts/chinese-wav2vec2-base")
# wav2vec_feature_extractor, audio_encoder= custom_init('cpu', "ckpts/wav2vec")
pad = int(padded_frames_for_embeddings/ fps * sr)
new_human_speech1, new_human_speech2, sum_human_speechs = audio_prepare_multi(audio_guide1, audio_guide2, combination_type, duration= num_frames / fps, pad = pad)
audio_embedding_1 = get_embedding(new_human_speech1, wav2vec_feature_extractor, audio_encoder, sr=sr, fps= fps)
audio_embedding_2 = get_embedding(new_human_speech2, wav2vec_feature_extractor, audio_encoder, sr=sr, fps= fps)
full_audio_embs = []
if audio_guide1 != None: full_audio_embs.append(audio_embedding_1)
# if audio_guide1 != None: full_audio_embs.append(audio_embedding_1)
if audio_guide2 != None: full_audio_embs.append(audio_embedding_2)
if audio_guide2 == None: sum_human_speechs = None
return full_audio_embs, sum_human_speechs
def get_window_audio_embeddings(full_audio_embs, audio_start_idx=0, clip_length = 81, vae_scale = 4, audio_window = 5):
if full_audio_embs == None: return None
HUMAN_NUMBER = len(full_audio_embs)
audio_end_idx = audio_start_idx + clip_length
indices = (torch.arange(2 * 2 + 1) - 2) * 1
audio_embs = []
# split audio with window size
for human_idx in range(HUMAN_NUMBER):
center_indices = torch.arange(
audio_start_idx,
audio_end_idx,
1
).unsqueeze(
1
) + indices.unsqueeze(0)
center_indices = torch.clamp(center_indices, min=0, max=full_audio_embs[human_idx].shape[0]-1).to(full_audio_embs[human_idx].device)
audio_emb = full_audio_embs[human_idx][center_indices][None,...] #.to(self.device)
audio_embs.append(audio_emb)
audio_embs = torch.concat(audio_embs, dim=0) #.to(self.param_dtype)
# audio_cond = audio.to(device=x.device, dtype=x.dtype)
audio_cond = audio_embs
first_frame_audio_emb_s = audio_cond[:, :1, ...]
latter_frame_audio_emb = audio_cond[:, 1:, ...]
latter_frame_audio_emb = rearrange(latter_frame_audio_emb, "b (n_t n) w s c -> b n_t n w s c", n=vae_scale)
middle_index = audio_window // 2
latter_first_frame_audio_emb = latter_frame_audio_emb[:, :, :1, :middle_index+1, ...]
latter_first_frame_audio_emb = rearrange(latter_first_frame_audio_emb, "b n_t n w s c -> b n_t (n w) s c")
latter_last_frame_audio_emb = latter_frame_audio_emb[:, :, -1:, middle_index:, ...]
latter_last_frame_audio_emb = rearrange(latter_last_frame_audio_emb, "b n_t n w s c -> b n_t (n w) s c")
latter_middle_frame_audio_emb = latter_frame_audio_emb[:, :, 1:-1, middle_index:middle_index+1, ...]
latter_middle_frame_audio_emb = rearrange(latter_middle_frame_audio_emb, "b n_t n w s c -> b n_t (n w) s c")
latter_frame_audio_emb_s = torch.concat([latter_first_frame_audio_emb, latter_middle_frame_audio_emb, latter_last_frame_audio_emb], dim=2)
return [first_frame_audio_emb_s, latter_frame_audio_emb_s]
def resize_and_centercrop(cond_image, target_size):
"""
Resize image or tensor to the target size without padding.
"""
# Get the original size
if isinstance(cond_image, torch.Tensor):
_, orig_h, orig_w = cond_image.shape
else:
orig_h, orig_w = cond_image.height, cond_image.width
target_h, target_w = target_size
# Calculate the scaling factor for resizing
scale_h = target_h / orig_h
scale_w = target_w / orig_w
# Compute the final size
scale = max(scale_h, scale_w)
final_h = math.ceil(scale * orig_h)
final_w = math.ceil(scale * orig_w)
# Resize
if isinstance(cond_image, torch.Tensor):
if len(cond_image.shape) == 3:
cond_image = cond_image[None]
resized_tensor = nn.functional.interpolate(cond_image, size=(final_h, final_w), mode='nearest').contiguous()
# crop
cropped_tensor = transforms.functional.center_crop(resized_tensor, target_size)
cropped_tensor = cropped_tensor.squeeze(0)
else:
resized_image = cond_image.resize((final_w, final_h), resample=Image.BILINEAR)
resized_image = np.array(resized_image)
# tensor and crop
resized_tensor = torch.from_numpy(resized_image)[None, ...].permute(0, 3, 1, 2).contiguous()
cropped_tensor = transforms.functional.center_crop(resized_tensor, target_size)
cropped_tensor = cropped_tensor[:, :, None, :, :]
return cropped_tensor
def timestep_transform(
t,
shift=5.0,
num_timesteps=1000,
):
t = t / num_timesteps
# shift the timestep based on ratio
new_t = shift * t / (1 + (shift - 1) * t)
new_t = new_t * num_timesteps
return new_t
def parse_speakers_locations(speakers_locations):
bbox = {}
if speakers_locations is None or len(speakers_locations) == 0:
return None, ""
speakers = speakers_locations.split(" ")
if len(speakers) !=2:
error= "Two speakers locations should be defined"
return "", error
for i, speaker in enumerate(speakers):
location = speaker.strip().split(":")
if len(location) not in (2,4):
error = f"Invalid Speaker Location '{location}'. A Speaker Location should be defined in the format Left:Right or usuing a BBox Left:Top:Right:Bottom"
return "", error
try:
good = False
location_float = [ float(val) for val in location]
good = all( 0 <= val <= 100 for val in location_float)
except:
pass
if not good:
error = f"Invalid Speaker Location '{location}'. Each number should be between 0 and 100."
return "", error
if len(location_float) == 2:
location_float = [location_float[0], 0, location_float[1], 100]
bbox[f"human{i}"] = location_float
return bbox, ""
# construct human mask
def get_target_masks(HUMAN_NUMBER, lat_h, lat_w, src_h, src_w, face_scale = 0.05, bbox = None):
human_masks = []
if HUMAN_NUMBER==1:
background_mask = torch.ones([src_h, src_w])
human_mask1 = torch.ones([src_h, src_w])
human_mask2 = torch.ones([src_h, src_w])
human_masks = [human_mask1, human_mask2, background_mask]
elif HUMAN_NUMBER==2:
if bbox != None:
assert len(bbox) == HUMAN_NUMBER, f"The number of target bbox should be the same with cond_audio"
background_mask = torch.zeros([src_h, src_w])
for _, person_bbox in bbox.items():
y_min, x_min, y_max, x_max = person_bbox
x_min, y_min, x_max, y_max = max(x_min,5), max(y_min, 5), min(x_max,95), min(y_max,95)
x_min, y_min, x_max, y_max = int(src_h * x_min / 100), int(src_w * y_min / 100), int(src_h * x_max / 100), int(src_w * y_max / 100)
human_mask = torch.zeros([src_h, src_w])
human_mask[int(x_min):int(x_max), int(y_min):int(y_max)] = 1
background_mask += human_mask
human_masks.append(human_mask)
else:
x_min, x_max = int(src_h * face_scale), int(src_h * (1 - face_scale))
background_mask = torch.zeros([src_h, src_w])
background_mask = torch.zeros([src_h, src_w])
human_mask1 = torch.zeros([src_h, src_w])
human_mask2 = torch.zeros([src_h, src_w])
lefty_min, lefty_max = int((src_w//2) * face_scale), int((src_w//2) * (1 - face_scale))
righty_min, righty_max = int((src_w//2) * face_scale + (src_w//2)), int((src_w//2) * (1 - face_scale) + (src_w//2))
human_mask1[x_min:x_max, lefty_min:lefty_max] = 1
human_mask2[x_min:x_max, righty_min:righty_max] = 1
background_mask += human_mask1
background_mask += human_mask2
human_masks = [human_mask1, human_mask2]
background_mask = torch.where(background_mask > 0, torch.tensor(0), torch.tensor(1))
human_masks.append(background_mask)
# toto = Image.fromarray(human_masks[2].mul_(255).unsqueeze(-1).repeat(1,1,3).to(torch.uint8).cpu().numpy())
ref_target_masks = torch.stack(human_masks, dim=0) #.to(self.device)
# resize and centercrop for ref_target_masks
# ref_target_masks = resize_and_centercrop(ref_target_masks, (target_h, target_w))
N_h, N_w = lat_h // 2, lat_w // 2
token_ref_target_masks = F.interpolate(ref_target_masks.unsqueeze(0), size=(N_h, N_w), mode='nearest').squeeze()
token_ref_target_masks = (token_ref_target_masks > 0)
token_ref_target_masks = token_ref_target_masks.float() #.to(self.device)
token_ref_target_masks = token_ref_target_masks.view(token_ref_target_masks.shape[0], -1)
return token_ref_target_masks |