WANGP1 / flux /modules /conditioner.py
rahul7star's picture
Migrated from GitHub
30f8a30 verified
from torch import Tensor, nn
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
import os
class HFEmbedder(nn.Module):
def __init__(self, version: str, text_encoder_filename, max_length: int, is_clip = False, **hf_kwargs):
super().__init__()
self.is_clip = is_clip
self.max_length = max_length
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
if is_clip:
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length)
self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs)
else:
from mmgp import offload as offloadobj
self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(os.path.dirname(text_encoder_filename), max_length=max_length)
self.hf_module: T5EncoderModel = offloadobj.fast_load_transformers_model(text_encoder_filename)
self.hf_module = self.hf_module.eval().requires_grad_(False)
def forward(self, text: list[str]) -> Tensor:
batch_encoding = self.tokenizer(
text,
truncation=True,
max_length=self.max_length,
return_length=False,
return_overflowing_tokens=False,
padding="max_length",
return_tensors="pt",
)
outputs = self.hf_module(
input_ids=batch_encoding["input_ids"].to(self.hf_module.device),
attention_mask=None,
output_hidden_states=False,
)
return outputs[self.output_key].bfloat16()