Spaces:
Paused
Paused
import gc | |
import logging | |
import torch | |
from .eval_utils import (ModelConfig, VideoInfo, all_model_cfg, generate, load_image, | |
load_video, make_video, setup_eval_logging) | |
from .model.flow_matching import FlowMatching | |
from .model.networks import MMAudio, get_my_mmaudio | |
from .model.sequence_config import SequenceConfig | |
from .model.utils.features_utils import FeaturesUtils | |
persistent_offloadobj = None | |
def get_model(persistent_models = False, verboseLevel = 1) -> tuple[MMAudio, FeaturesUtils, SequenceConfig]: | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
global device, persistent_offloadobj, persistent_net, persistent_features_utils, persistent_seq_cfg | |
log = logging.getLogger() | |
device = 'cpu' #"cuda" | |
# if torch.cuda.is_available(): | |
# device = 'cuda' | |
# elif torch.backends.mps.is_available(): | |
# device = 'mps' | |
# else: | |
# log.warning('CUDA/MPS are not available, running on CPU') | |
dtype = torch.bfloat16 | |
model: ModelConfig = all_model_cfg['large_44k_v2'] | |
# model.download_if_needed() | |
setup_eval_logging() | |
seq_cfg = model.seq_cfg | |
if persistent_offloadobj == None: | |
from accelerate import init_empty_weights | |
# with init_empty_weights(): | |
net: MMAudio = get_my_mmaudio(model.model_name) | |
net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True)) | |
net.to(device, dtype).eval() | |
log.info(f'Loaded weights from {model.model_path}') | |
feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path, | |
synchformer_ckpt=model.synchformer_ckpt, | |
enable_conditions=True, | |
mode=model.mode, | |
bigvgan_vocoder_ckpt=model.bigvgan_16k_path, | |
need_vae_encoder=False) | |
feature_utils = feature_utils.to(device, dtype).eval() | |
feature_utils.device = "cuda" | |
pipe = { "net" : net, "clip" : feature_utils.clip_model, "syncformer" : feature_utils.synchformer, "vocode" : feature_utils.tod.vocoder, "vae" : feature_utils.tod.vae } | |
from mmgp import offload | |
offloadobj = offload.profile(pipe, profile_no=4, verboseLevel=2) | |
if persistent_models: | |
persistent_offloadobj = offloadobj | |
persistent_net = net | |
persistent_features_utils = feature_utils | |
persistent_seq_cfg = seq_cfg | |
else: | |
offloadobj = persistent_offloadobj | |
net = persistent_net | |
feature_utils = persistent_features_utils | |
seq_cfg = persistent_seq_cfg | |
if not persistent_models: | |
persistent_offloadobj = None | |
persistent_net = None | |
persistent_features_utils = None | |
persistent_seq_cfg = None | |
return net, feature_utils, seq_cfg, offloadobj | |
def video_to_audio(video, prompt: str, negative_prompt: str, seed: int, num_steps: int, | |
cfg_strength: float, duration: float, save_path , persistent_models = False, audio_file_only = False, verboseLevel = 1): | |
global device | |
net, feature_utils, seq_cfg, offloadobj = get_model(persistent_models, verboseLevel ) | |
rng = torch.Generator(device="cuda") | |
if seed >= 0: | |
rng.manual_seed(seed) | |
else: | |
rng.seed() | |
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps) | |
video_info = load_video(video, duration) | |
clip_frames = video_info.clip_frames | |
sync_frames = video_info.sync_frames | |
duration = video_info.duration_sec | |
clip_frames = clip_frames.unsqueeze(0) | |
sync_frames = sync_frames.unsqueeze(0) | |
seq_cfg.duration = duration | |
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len) | |
audios = generate(clip_frames, | |
sync_frames, [prompt], | |
negative_text=[negative_prompt], | |
feature_utils=feature_utils, | |
net=net, | |
fm=fm, | |
rng=rng, | |
cfg_strength=cfg_strength, | |
offloadobj = offloadobj | |
) | |
audio = audios.float().cpu()[0] | |
if audio_file_only: | |
import torchaudio | |
torchaudio.save(save_path, audio.unsqueeze(0) if audio.dim() == 1 else audio, seq_cfg.sampling_rate) | |
else: | |
make_video(video, video_info, save_path, audio, sampling_rate=seq_cfg.sampling_rate) | |
offloadobj.unload_all() | |
if not persistent_models: | |
offloadobj.release() | |
torch.cuda.empty_cache() | |
gc.collect() | |
return save_path | |