WANGP1 / preprocessing /speakers_separator.py
rahul7star's picture
Migrated from GitHub
30f8a30 verified
import torch
import torchaudio
import numpy as np
import os
import warnings
from pathlib import Path
from typing import Dict, List, Tuple
import argparse
from concurrent.futures import ThreadPoolExecutor
import gc
import logging
verbose_output = True
# Suppress specific warnings before importing pyannote
warnings.filterwarnings("ignore", category=UserWarning, module="pyannote.audio.models.blocks.pooling")
warnings.filterwarnings("ignore", message=".*TensorFloat-32.*", category=UserWarning)
warnings.filterwarnings("ignore", message=".*std\\(\\): degrees of freedom.*", category=UserWarning)
warnings.filterwarnings("ignore", message=".*speechbrain.pretrained.*was deprecated.*", category=UserWarning)
warnings.filterwarnings("ignore", message=".*Module 'speechbrain.pretrained'.*", category=UserWarning)
# logging.getLogger('speechbrain').setLevel(logging.WARNING)
# logging.getLogger('speechbrain.utils.checkpoints').setLevel(logging.WARNING)
os.environ["SB_LOG_LEVEL"] = "WARNING"
import speechbrain
def xprint(t = None):
if verbose_output:
print(t)
# Configure TF32 before any CUDA operations to avoid reproducibility warnings
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
try:
from pyannote.audio import Pipeline
PYANNOTE_AVAILABLE = True
except ImportError:
PYANNOTE_AVAILABLE = False
print("Install: pip install pyannote.audio")
class OptimizedPyannote31SpeakerSeparator:
def __init__(self, hf_token: str = None, local_model_path: str = None,
vad_onset: float = 0.2, vad_offset: float = 0.8):
"""
Initialize with Pyannote 3.1 pipeline with tunable VAD sensitivity.
"""
embedding_path = "ckpts/pyannote/pyannote_model_wespeaker-voxceleb-resnet34-LM.bin"
segmentation_path = "ckpts/pyannote/pytorch_model_segmentation-3.0.bin"
xprint(f"Loading segmentation model from: {segmentation_path}")
xprint(f"Loading embedding model from: {embedding_path}")
try:
from pyannote.audio import Model
from pyannote.audio.pipelines import SpeakerDiarization
# Load models directly
segmentation_model = Model.from_pretrained(segmentation_path)
embedding_model = Model.from_pretrained(embedding_path)
xprint("Models loaded successfully!")
# Create pipeline manually
self.pipeline = SpeakerDiarization(
segmentation=segmentation_model,
embedding=embedding_model,
clustering='AgglomerativeClustering'
)
# Instantiate with default parameters
self.pipeline.instantiate({
'clustering': {
'method': 'centroid',
'min_cluster_size': 12,
'threshold': 0.7045654963945799
},
'segmentation': {
'min_duration_off': 0.0
}
})
xprint("Pipeline instantiated successfully!")
# Send to GPU if available
if torch.cuda.is_available():
xprint("CUDA available, moving pipeline to GPU...")
self.pipeline.to(torch.device("cuda"))
else:
xprint("CUDA not available, using CPU...")
except Exception as e:
xprint(f"Error loading pipeline: {e}")
xprint(f"Error type: {type(e)}")
import traceback
traceback.print_exc()
raise
self.hf_token = hf_token
self._overlap_pipeline = None
def separate_audio(self, audio_path: str, output1, output2 ) -> Dict[str, str]:
"""Optimized main separation function with memory management."""
xprint("Starting optimized audio separation...")
self._current_audio_path = os.path.abspath(audio_path)
# Suppress warnings during processing
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning)
# Load audio
waveform, sample_rate = self.load_audio(audio_path)
# Perform diarization
diarization = self.perform_optimized_diarization(audio_path)
# Create masks
masks = self.create_optimized_speaker_masks(diarization, waveform.shape[1], sample_rate)
# Apply background preservation
final_masks = self.apply_optimized_background_preservation(masks, waveform.shape[1])
# Clear intermediate results
del masks
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
# Save outputs efficiently
output_paths = self._save_outputs_optimized(waveform, final_masks, sample_rate, audio_path, output1, output2)
return output_paths
def _extract_both_speaking_regions(
self,
diarization,
audio_length: int,
sample_rate: int
) -> np.ndarray:
"""
Detect regions where ≥2 speakers talk simultaneously
using pyannote/overlapped-speech-detection.
Falls back to manual pair-wise detection if the model
is unavailable.
"""
xprint("Extracting overlap with dedicated pipeline…")
both_speaking_mask = np.zeros(audio_length, dtype=bool)
# ── 1) try the proper overlap model ────────────────────────────────
# overlap_pipeline = self._get_overlap_pipeline() # doesnt work anyway
overlap_pipeline = None
# try the path stored by separate_audio – otherwise whatever the
# diarization object carries (may be None)
audio_uri = getattr(self, "_current_audio_path", None) \
or getattr(diarization, "uri", None)
if overlap_pipeline and audio_uri:
try:
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning)
overlap_annotation = overlap_pipeline(audio_uri)
for seg in overlap_annotation.get_timeline().support():
s = max(0, int(seg.start * sample_rate))
e = min(audio_length, int(seg.end * sample_rate))
if s < e:
both_speaking_mask[s:e] = True
t = np.sum(both_speaking_mask) / sample_rate
xprint(f" Found {t:.1f}s of overlapped speech (model) ")
return both_speaking_mask
except Exception as e:
xprint(f" ⚠ Overlap model failed: {e}")
# ── 2) fallback = brute-force pairwise intersection ────────────────
xprint(" Falling back to manual overlap detection…")
timeline_tracks = list(diarization.itertracks(yield_label=True))
for i, (turn1, _, spk1) in enumerate(timeline_tracks):
for j, (turn2, _, spk2) in enumerate(timeline_tracks):
if i >= j or spk1 == spk2:
continue
o_start, o_end = max(turn1.start, turn2.start), min(turn1.end, turn2.end)
if o_start < o_end:
s = max(0, int(o_start * sample_rate))
e = min(audio_length, int(o_end * sample_rate))
if s < e:
both_speaking_mask[s:e] = True
t = np.sum(both_speaking_mask) / sample_rate
xprint(f" Found {t:.1f}s of overlapped speech (manual) ")
return both_speaking_mask
def _configure_vad(self, vad_onset: float, vad_offset: float):
"""Configure VAD parameters efficiently."""
xprint("Applying more sensitive VAD parameters...")
try:
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning)
if hasattr(self.pipeline, '_vad'):
self.pipeline._vad.instantiate({
"onset": vad_onset,
"offset": vad_offset,
"min_duration_on": 0.1,
"min_duration_off": 0.1,
"pad_onset": 0.1,
"pad_offset": 0.1,
})
xprint(f"✓ VAD parameters updated: onset={vad_onset}, offset={vad_offset}")
else:
xprint("⚠ Could not access VAD component directly")
except Exception as e:
xprint(f"⚠ Could not modify VAD parameters: {e}")
def _get_overlap_pipeline(self):
"""
Build a pyannote-3-native OverlappedSpeechDetection pipeline.
• uses the open-licence `pyannote/segmentation-3.0` checkpoint
• only `min_duration_on/off` can be tuned (API 3.x)
"""
if self._overlap_pipeline is not None:
return None if self._overlap_pipeline is False else self._overlap_pipeline
try:
from pyannote.audio.pipelines import OverlappedSpeechDetection
xprint("Building OverlappedSpeechDetection with segmentation-3.0…")
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning)
# 1) constructor → segmentation model ONLY
ods = OverlappedSpeechDetection(
segmentation="pyannote/segmentation-3.0"
)
# 2) instantiate → **single dict** with the two valid knobs
ods.instantiate({
"min_duration_on": 0.06, # ≈ your previous 0.055 s
"min_duration_off": 0.10, # ≈ your previous 0.098 s
})
if torch.cuda.is_available():
ods.to(torch.device("cuda"))
self._overlap_pipeline = ods
xprint("✓ Overlap pipeline ready (segmentation-3.0)")
return ods
except Exception as e:
xprint(f"⚠ Could not build overlap pipeline ({e}). "
"Falling back to manual pair-wise detection.")
self._overlap_pipeline = False
return None
def _xprint_setup_instructions(self):
"""xprint setup instructions."""
xprint("\nTo use Pyannote 3.1:")
xprint("1. Get token: https://huggingface.co/settings/tokens")
xprint("2. Accept terms: https://huggingface.co/pyannote/speaker-diarization-3.1")
xprint("3. Run with: --token YOUR_TOKEN")
def load_audio(self, audio_path: str) -> Tuple[torch.Tensor, int]:
"""Load and preprocess audio efficiently."""
xprint(f"Loading audio: {audio_path}")
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning)
waveform, sample_rate = torchaudio.load(audio_path)
# Convert to mono efficiently
if waveform.shape[0] > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
xprint(f"Audio: {waveform.shape[1]} samples at {sample_rate}Hz")
return waveform, sample_rate
def perform_optimized_diarization(self, audio_path: str) -> object:
"""
Optimized diarization with efficient parameter testing.
"""
xprint("Running optimized Pyannote 3.1 diarization...")
# Optimized strategy order - most likely to succeed first
strategies = [
{"min_speakers": 2, "max_speakers": 2}, # Most common case
{"num_speakers": 2}, # Direct specification
{"min_speakers": 2, "max_speakers": 3}, # Slight flexibility
{"min_speakers": 1, "max_speakers": 2}, # Fallback
{"min_speakers": 2, "max_speakers": 4}, # More flexibility
{} # No constraints
]
for i, params in enumerate(strategies):
try:
xprint(f"Strategy {i+1}: {params}")
# Clear GPU memory before each attempt
if torch.cuda.is_available():
torch.cuda.empty_cache()
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning)
diarization = self.pipeline(audio_path, **params)
speakers = list(diarization.labels())
speaker_count = len(speakers)
xprint(f" → Detected {speaker_count} speakers: {speakers}")
# Accept first successful result with 2+ speakers
if speaker_count >= 2:
xprint(f"✓ Success with strategy {i+1}! Using {speaker_count} speakers")
return diarization
elif speaker_count == 1 and i == 0:
# Store first result as fallback
fallback_diarization = diarization
except Exception as e:
xprint(f" Strategy {i+1} failed: {e}")
continue
# If we only got 1 speaker, try one aggressive attempt
if 'fallback_diarization' in locals():
xprint("Attempting aggressive clustering for single speaker...")
try:
aggressive_diarization = self._try_aggressive_clustering(audio_path)
if aggressive_diarization and len(list(aggressive_diarization.labels())) >= 2:
return aggressive_diarization
except Exception as e:
xprint(f"Aggressive clustering failed: {e}")
xprint("Using single speaker result")
return fallback_diarization
# Last resort - run without constraints
xprint("Last resort: running without constraints...")
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning)
return self.pipeline(audio_path)
def _try_aggressive_clustering(self, audio_path: str) -> object:
"""Try aggressive clustering parameters."""
try:
from pyannote.audio.pipelines.speaker_diarization import SpeakerDiarization
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning)
# Create aggressive pipeline
temp_pipeline = SpeakerDiarization(
segmentation=self.pipeline.segmentation,
embedding=self.pipeline.embedding,
clustering="AgglomerativeClustering"
)
temp_pipeline.instantiate({
"clustering": {
"method": "centroid",
"min_cluster_size": 1,
"threshold": 0.1,
},
"segmentation": {
"min_duration_off": 0.0,
"min_duration_on": 0.1,
}
})
return temp_pipeline(audio_path, min_speakers=2)
except Exception as e:
xprint(f"Aggressive clustering setup failed: {e}")
return None
def create_optimized_speaker_masks(self, diarization, audio_length: int, sample_rate: int) -> Dict[str, np.ndarray]:
"""Optimized mask creation using vectorized operations."""
xprint("Creating optimized speaker masks...")
speakers = list(diarization.labels())
xprint(f"Processing speakers: {speakers}")
# Handle edge cases
if len(speakers) == 0:
xprint("⚠ No speakers detected, creating dummy masks")
return self._create_dummy_masks(audio_length)
if len(speakers) == 1:
xprint("⚠ Only 1 speaker detected, creating temporal split")
return self._create_optimized_temporal_split(diarization, audio_length, sample_rate)
# Extract both-speaking regions from diarization timeline
both_speaking_regions = self._extract_both_speaking_regions(diarization, audio_length, sample_rate)
# Optimized mask creation for multiple speakers
masks = {}
# Batch process all speakers
for speaker in speakers:
# Get all segments for this speaker at once
segments = []
speaker_timeline = diarization.label_timeline(speaker)
for segment in speaker_timeline:
start_sample = max(0, int(segment.start * sample_rate))
end_sample = min(audio_length, int(segment.end * sample_rate))
if start_sample < end_sample:
segments.append((start_sample, end_sample))
# Vectorized mask creation
if segments:
mask = self._create_mask_vectorized(segments, audio_length)
masks[speaker] = mask
speaking_time = np.sum(mask) / sample_rate
xprint(f" {speaker}: {speaking_time:.1f}s speaking time")
else:
masks[speaker] = np.zeros(audio_length, dtype=np.float32)
# Store both-speaking info for later use
self._both_speaking_regions = both_speaking_regions
return masks
def _create_mask_vectorized(self, segments: List[Tuple[int, int]], audio_length: int) -> np.ndarray:
"""Create mask using vectorized operations."""
mask = np.zeros(audio_length, dtype=np.float32)
if not segments:
return mask
# Convert segments to arrays for vectorized operations
segments_array = np.array(segments)
starts = segments_array[:, 0]
ends = segments_array[:, 1]
# Use advanced indexing for bulk assignment
for start, end in zip(starts, ends):
mask[start:end] = 1.0
return mask
def _create_dummy_masks(self, audio_length: int) -> Dict[str, np.ndarray]:
"""Create dummy masks for edge cases."""
return {
"SPEAKER_00": np.ones(audio_length, dtype=np.float32) * 0.5,
"SPEAKER_01": np.ones(audio_length, dtype=np.float32) * 0.5
}
def _create_optimized_temporal_split(self, diarization, audio_length: int, sample_rate: int) -> Dict[str, np.ndarray]:
"""Optimized temporal split with vectorized operations."""
xprint("Creating optimized temporal split...")
# Extract all segments at once
segments = []
for turn, _, speaker in diarization.itertracks(yield_label=True):
segments.append((turn.start, turn.end))
segments.sort()
xprint(f"Found {len(segments)} speech segments")
if len(segments) <= 1:
# Single segment or no segments - simple split
return self._create_simple_split(audio_length)
# Vectorized gap analysis
segment_array = np.array(segments)
gaps = segment_array[1:, 0] - segment_array[:-1, 1] # Vectorized gap calculation
if len(gaps) > 0:
longest_gap_idx = np.argmax(gaps)
longest_gap_duration = gaps[longest_gap_idx]
xprint(f"Longest gap: {longest_gap_duration:.1f}s after segment {longest_gap_idx+1}")
if longest_gap_duration > 1.0:
# Split at natural break
split_point = longest_gap_idx + 1
xprint(f"Splitting at natural break: segments 1-{split_point} vs {split_point+1}-{len(segments)}")
return self._create_split_masks(segments, split_point, audio_length, sample_rate)
# Fallback: alternating assignment
xprint("Using alternating assignment...")
return self._create_alternating_masks(segments, audio_length, sample_rate)
def _create_simple_split(self, audio_length: int) -> Dict[str, np.ndarray]:
"""Simple temporal split in half."""
mid_point = audio_length // 2
masks = {
"SPEAKER_00": np.zeros(audio_length, dtype=np.float32),
"SPEAKER_01": np.zeros(audio_length, dtype=np.float32)
}
masks["SPEAKER_00"][:mid_point] = 1.0
masks["SPEAKER_01"][mid_point:] = 1.0
return masks
def _create_split_masks(self, segments: List[Tuple[float, float]], split_point: int,
audio_length: int, sample_rate: int) -> Dict[str, np.ndarray]:
"""Create masks with split at specific point."""
masks = {
"SPEAKER_00": np.zeros(audio_length, dtype=np.float32),
"SPEAKER_01": np.zeros(audio_length, dtype=np.float32)
}
# Vectorized segment processing
for i, (start_time, end_time) in enumerate(segments):
start_sample = max(0, int(start_time * sample_rate))
end_sample = min(audio_length, int(end_time * sample_rate))
if start_sample < end_sample:
speaker_key = "SPEAKER_00" if i < split_point else "SPEAKER_01"
masks[speaker_key][start_sample:end_sample] = 1.0
return masks
def _create_alternating_masks(self, segments: List[Tuple[float, float]],
audio_length: int, sample_rate: int) -> Dict[str, np.ndarray]:
"""Create masks with alternating assignment."""
masks = {
"SPEAKER_00": np.zeros(audio_length, dtype=np.float32),
"SPEAKER_01": np.zeros(audio_length, dtype=np.float32)
}
for i, (start_time, end_time) in enumerate(segments):
start_sample = max(0, int(start_time * sample_rate))
end_sample = min(audio_length, int(end_time * sample_rate))
if start_sample < end_sample:
speaker_key = f"SPEAKER_0{i % 2}"
masks[speaker_key][start_sample:end_sample] = 1.0
return masks
def apply_optimized_background_preservation(self, masks: Dict[str, np.ndarray],
audio_length: int) -> Dict[str, np.ndarray]:
"""
Heavily optimized background preservation using pure vectorized operations.
"""
xprint("Applying optimized voice separation logic...")
# Ensure exactly 2 speakers
speaker_keys = self._get_top_speakers(masks, audio_length)
# Pre-allocate final masks
final_masks = {
speaker: np.zeros(audio_length, dtype=np.float32)
for speaker in speaker_keys
}
# Get active masks (vectorized)
active_0 = masks.get(speaker_keys[0], np.zeros(audio_length)) > 0.5
active_1 = masks.get(speaker_keys[1], np.zeros(audio_length)) > 0.5
# Vectorized mask assignment
both_active = active_0 & active_1
only_0 = active_0 & ~active_1
only_1 = ~active_0 & active_1
neither = ~active_0 & ~active_1
# Apply assignments (all vectorized)
final_masks[speaker_keys[0]][both_active] = 1.0
final_masks[speaker_keys[1]][both_active] = 1.0
final_masks[speaker_keys[0]][only_0] = 1.0
final_masks[speaker_keys[1]][only_0] = 0.0
final_masks[speaker_keys[0]][only_1] = 0.0
final_masks[speaker_keys[1]][only_1] = 1.0
# Handle ambiguous regions efficiently
if np.any(neither):
ambiguous_assignments = self._compute_ambiguous_assignments_vectorized(
masks, speaker_keys, neither, audio_length
)
# Apply ambiguous assignments
final_masks[speaker_keys[0]][neither] = (ambiguous_assignments == 0).astype(np.float32) * 0.5
final_masks[speaker_keys[1]][neither] = (ambiguous_assignments == 1).astype(np.float32) * 0.5
# xprint statistics (vectorized)
sample_rate = 16000 # Assume 16kHz for timing
xprint(f" Both speaking clearly: {np.sum(both_active)/sample_rate:.1f}s")
xprint(f" {speaker_keys[0]} only: {np.sum(only_0)/sample_rate:.1f}s")
xprint(f" {speaker_keys[1]} only: {np.sum(only_1)/sample_rate:.1f}s")
xprint(f" Ambiguous (assigned): {np.sum(neither)/sample_rate:.1f}s")
# Apply minimum duration smoothing to prevent rapid switching
final_masks = self._apply_minimum_duration_smoothing(final_masks, sample_rate)
return final_masks
def _get_top_speakers(self, masks: Dict[str, np.ndarray], audio_length: int) -> List[str]:
"""Get top 2 speakers by speaking time."""
speaker_keys = list(masks.keys())
if len(speaker_keys) > 2:
# Vectorized speaking time calculation
speaking_times = {k: np.sum(v) for k, v in masks.items()}
speaker_keys = sorted(speaking_times.keys(), key=lambda x: speaking_times[x], reverse=True)[:2]
xprint(f"Keeping top 2 speakers: {speaker_keys}")
elif len(speaker_keys) == 1:
speaker_keys.append("SPEAKER_SILENT")
return speaker_keys
def _compute_ambiguous_assignments_vectorized(self, masks: Dict[str, np.ndarray],
speaker_keys: List[str],
ambiguous_mask: np.ndarray,
audio_length: int) -> np.ndarray:
"""Compute speaker assignments for ambiguous regions using vectorized operations."""
ambiguous_indices = np.where(ambiguous_mask)[0]
if len(ambiguous_indices) == 0:
return np.array([])
# Get speaker segments efficiently
speaker_segments = {}
for speaker in speaker_keys:
if speaker in masks and speaker != "SPEAKER_SILENT":
mask = masks[speaker] > 0.5
# Find segments using vectorized operations
diff = np.diff(np.concatenate(([False], mask, [False])).astype(int))
starts = np.where(diff == 1)[0]
ends = np.where(diff == -1)[0]
speaker_segments[speaker] = np.column_stack([starts, ends])
else:
speaker_segments[speaker] = np.array([]).reshape(0, 2)
# Vectorized distance calculations
distances = {}
for speaker in speaker_keys:
segments = speaker_segments[speaker]
if len(segments) == 0:
distances[speaker] = np.full(len(ambiguous_indices), np.inf)
else:
# Compute distances to all segments at once
distances[speaker] = self._compute_distances_to_segments(ambiguous_indices, segments)
# Assign based on minimum distance with late-audio bias
assignments = self._assign_based_on_distance(
distances, speaker_keys, ambiguous_indices, audio_length
)
return assignments
def _apply_minimum_duration_smoothing(self, masks: Dict[str, np.ndarray],
sample_rate: int, min_duration_ms: int = 600) -> Dict[str, np.ndarray]:
"""
Apply minimum duration smoothing with STRICT timer enforcement.
Uses original both-speaking regions from diarization.
"""
xprint(f"Applying STRICT minimum duration smoothing ({min_duration_ms}ms)...")
min_samples = int(min_duration_ms * sample_rate / 1000)
speaker_keys = list(masks.keys())
if len(speaker_keys) != 2:
return masks
mask0 = masks[speaker_keys[0]]
mask1 = masks[speaker_keys[1]]
# Use original both-speaking regions from diarization
both_speaking_original = getattr(self, '_both_speaking_regions', np.zeros(len(mask0), dtype=bool))
# Identify regions based on original diarization info
ambiguous_original = (mask0 < 0.3) & (mask1 < 0.3) & ~both_speaking_original
# Clear dominance: one speaker higher, and not both-speaking or ambiguous
remaining_mask = ~both_speaking_original & ~ambiguous_original
speaker0_dominant = (mask0 > mask1) & remaining_mask
speaker1_dominant = (mask1 > mask0) & remaining_mask
# Create preference signal including both-speaking as valid state
# -1=ambiguous, 0=speaker0, 1=speaker1, 2=both_speaking
preference_signal = np.full(len(mask0), -1, dtype=int)
preference_signal[speaker0_dominant] = 0
preference_signal[speaker1_dominant] = 1
preference_signal[both_speaking_original] = 2
# STRICT state machine enforcement
smoothed_assignment = np.full(len(mask0), -1, dtype=int)
corrections = 0
# State variables
current_state = -1 # -1=unset, 0=speaker0, 1=speaker1, 2=both_speaking
samples_remaining = 0 # Samples remaining in current state's lock period
# Process each sample with STRICT enforcement
for i in range(len(preference_signal)):
preference = preference_signal[i]
# If we're in a lock period, enforce the current state
if samples_remaining > 0:
# Force current state regardless of preference
smoothed_assignment[i] = current_state
samples_remaining -= 1
# Count corrections if this differs from preference
if preference >= 0 and preference != current_state:
corrections += 1
else:
# Lock period expired - can consider new state
if preference >= 0:
# Clear preference available (including both-speaking)
if current_state != preference:
# Switch to new state and start new lock period
current_state = preference
samples_remaining = min_samples - 1 # -1 because we use this sample
smoothed_assignment[i] = current_state
else:
# Ambiguous preference
if current_state >= 0:
# Continue with current state if we have one
smoothed_assignment[i] = current_state
else:
# No current state and ambiguous - leave as ambiguous
smoothed_assignment[i] = -1
# Convert back to masks based on smoothed assignment
smoothed_masks = {}
for i, speaker in enumerate(speaker_keys):
new_mask = np.zeros_like(mask0)
# Assign regions where this speaker is dominant
speaker_regions = smoothed_assignment == i
new_mask[speaker_regions] = 1.0
# Assign both-speaking regions (state 2) to both speakers
both_speaking_regions = smoothed_assignment == 2
new_mask[both_speaking_regions] = 1.0
# Handle ambiguous regions that remain unassigned
unassigned_ambiguous = smoothed_assignment == -1
if np.any(unassigned_ambiguous):
# Use original ambiguous values only for truly unassigned regions
original_ambiguous_mask = ambiguous_original & unassigned_ambiguous
new_mask[original_ambiguous_mask] = masks[speaker][original_ambiguous_mask]
smoothed_masks[speaker] = new_mask
# Calculate and xprint statistics
both_speaking_time = np.sum(smoothed_assignment == 2) / sample_rate
speaker0_time = np.sum(smoothed_assignment == 0) / sample_rate
speaker1_time = np.sum(smoothed_assignment == 1) / sample_rate
ambiguous_time = np.sum(smoothed_assignment == -1) / sample_rate
xprint(f" Both speaking clearly: {both_speaking_time:.1f}s")
xprint(f" {speaker_keys[0]} only: {speaker0_time:.1f}s")
xprint(f" {speaker_keys[1]} only: {speaker1_time:.1f}s")
xprint(f" Ambiguous (assigned): {ambiguous_time:.1f}s")
xprint(f" Enforced minimum duration on {corrections} samples ({corrections/sample_rate:.2f}s)")
return smoothed_masks
def _compute_distances_to_segments(self, indices: np.ndarray, segments: np.ndarray) -> np.ndarray:
"""Compute minimum distances from indices to segments (vectorized)."""
if len(segments) == 0:
return np.full(len(indices), np.inf)
# Broadcast for vectorized computation
indices_expanded = indices[:, np.newaxis] # Shape: (n_indices, 1)
starts = segments[:, 0] # Shape: (n_segments,)
ends = segments[:, 1] # Shape: (n_segments,)
# Compute distances to all segments
dist_to_start = np.maximum(0, starts - indices_expanded) # Shape: (n_indices, n_segments)
dist_from_end = np.maximum(0, indices_expanded - ends) # Shape: (n_indices, n_segments)
# Minimum of distance to start or from end for each segment
distances = np.minimum(dist_to_start, dist_from_end)
# Return minimum distance to any segment for each index
return np.min(distances, axis=1)
def _assign_based_on_distance(self, distances: Dict[str, np.ndarray],
speaker_keys: List[str],
ambiguous_indices: np.ndarray,
audio_length: int) -> np.ndarray:
"""Assign speakers based on distance with late-audio bias."""
speaker_0_distances = distances[speaker_keys[0]]
speaker_1_distances = distances[speaker_keys[1]]
# Basic assignment by minimum distance
assignments = (speaker_1_distances < speaker_0_distances).astype(int)
# Apply late-audio bias (vectorized)
late_threshold = int(audio_length * 0.6)
late_indices = ambiguous_indices > late_threshold
if np.any(late_indices) and len(speaker_keys) > 1:
# Simple late-audio bias: prefer speaker 1 in later parts
assignments[late_indices] = 1
return assignments
def _save_outputs_optimized(self, waveform: torch.Tensor, masks: Dict[str, np.ndarray],
sample_rate: int, audio_path: str, output1, output2) -> Dict[str, str]:
"""Optimized output saving with parallel processing."""
output_paths = {}
def save_speaker_audio(speaker_mask_pair, output):
speaker, mask = speaker_mask_pair
# Convert mask to tensor efficiently
mask_tensor = torch.from_numpy(mask).unsqueeze(0)
# Apply mask
masked_audio = waveform * mask_tensor
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning)
torchaudio.save(output, masked_audio, sample_rate)
xprint(f"✓ Saved {speaker}: {output}")
return speaker, output
# Use ThreadPoolExecutor for parallel saving
with ThreadPoolExecutor(max_workers=2) as executor:
results = list(executor.map(save_speaker_audio, masks.items(), [output1, output2]))
output_paths = dict(results)
return output_paths
def print_summary(self, audio_path: str):
"""xprint diarization summary."""
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning)
diarization = self.perform_optimized_diarization(audio_path)
xprint("\n=== Diarization Summary ===")
for turn, _, speaker in diarization.itertracks(yield_label=True):
xprint(f"{speaker}: {turn.start:.1f}s - {turn.end:.1f}s")
def extract_dual_audio(audio, output1, output2, verbose = False):
global verbose_output
verbose_output = verbose
separator = OptimizedPyannote31SpeakerSeparator(
None,
None,
vad_onset=0.2,
vad_offset=0.8
)
# Separate audio
import time
start_time = time.time()
outputs = separator.separate_audio(audio, output1, output2)
elapsed_time = time.time() - start_time
xprint(f"\n=== SUCCESS (completed in {elapsed_time:.2f}s) ===")
for speaker, path in outputs.items():
xprint(f"{speaker}: {path}")
def main():
parser = argparse.ArgumentParser(description="Optimized Pyannote 3.1 Speaker Separator")
parser.add_argument("--audio", required=True, help="Input audio file")
parser.add_argument("--output", required=True, help="Output directory")
parser.add_argument("--token", help="Hugging Face token")
parser.add_argument("--local-model", help="Path to local 3.1 model")
parser.add_argument("--summary", action="store_true", help="xprint summary")
# VAD sensitivity parameters
parser.add_argument("--vad-onset", type=float, default=0.2,
help="VAD onset threshold (lower = more sensitive to speech start, default: 0.2)")
parser.add_argument("--vad-offset", type=float, default=0.8,
help="VAD offset threshold (higher = keeps speech longer, default: 0.8)")
args = parser.parse_args()
xprint("=== Optimized Pyannote 3.1 Speaker Separator ===")
xprint("Performance optimizations: vectorized operations, memory management, parallel processing")
xprint(f"Audio: {args.audio}")
xprint(f"Output: {args.output}")
xprint(f"VAD onset: {args.vad_onset}")
xprint(f"VAD offset: {args.vad_offset}")
xprint()
if not os.path.exists(args.audio):
xprint(f"ERROR: Audio file not found: {args.audio}")
return
try:
# Initialize with VAD parameters
separator = OptimizedPyannote31SpeakerSeparator(
args.token,
args.local_model,
vad_onset=args.vad_onset,
vad_offset=args.vad_offset
)
# print summary if requested
if args.summary:
separator.print_summary(args.audio)
# Separate audio
import time
start_time = time.time()
audio_name = Path(args.audio).stem
output_filename = f"{audio_name}_speaker0.wav"
output_filename1 = f"{audio_name}_speaker1.wav"
output_path = os.path.join(args.output, output_filename)
output_path1 = os.path.join(args.output, output_filename1)
outputs = separator.separate_audio(args.audio, output_path, output_path1)
elapsed_time = time.time() - start_time
xprint(f"\n=== SUCCESS (completed in {elapsed_time:.2f}s) ===")
for speaker, path in outputs.items():
xprint(f"{speaker}: {path}")
except Exception as e:
xprint(f"ERROR: {e}")
return 1
if __name__ == "__main__":
exit(main())