import torch from einops import rearrange from torch import Tensor from wan.modules.attention import pay_attention def attention(qkv_list, pe: Tensor) -> Tensor: q, k, v = qkv_list qkv_list.clear() q_list = [q] q = None q = apply_rope_(q_list, pe) k_list = [k] k = None k = apply_rope_(k_list, pe) qkv_list = [q.transpose(1,2), k.transpose(1,2) ,v.transpose(1,2)] del q,k, v x = pay_attention(qkv_list).transpose(1,2) # x = torch.nn.functional.scaled_dot_product_attention(q, k, v) x = rearrange(x, "B H L D -> B L (H D)") return x def rope(pos: Tensor, dim: int, theta: int) -> Tensor: assert dim % 2 == 0 scale = torch.arange(0, dim, 2, dtype=pos.dtype, device=pos.device) / dim omega = 1.0 / (theta**scale) out = torch.einsum("...n,d->...nd", pos, omega) out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1) out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2) return out.float() def apply_rope_(q_list, freqs_cis: Tensor) -> tuple[Tensor, Tensor]: xq= q_list[0] xqshape = xq.shape xqdtype= xq.dtype q_list.clear() xq = xq.float().reshape(*xqshape[:-1], -1, 1, 2) xq_out = freqs_cis[..., 0] * xq[..., 0] xq = freqs_cis[..., 1] * xq[..., 1] xq_out.add_(xq) # xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] return xq_out.reshape(*xqshape).to(xqdtype) def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]: xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)