import math from dataclasses import dataclass import torch from einops import rearrange from torch import Tensor, nn from flux.math import attention, rope def get_linear_split_map(): hidden_size = 3072 split_linear_modules_map = { "qkv" : {"mapped_modules" : ["q", "k", "v"] , "split_sizes": [hidden_size, hidden_size, hidden_size]}, "linear1" : {"mapped_modules" : ["linear1_attn_q", "linear1_attn_k", "linear1_attn_v", "linear1_mlp"] , "split_sizes": [hidden_size, hidden_size, hidden_size, 7*hidden_size- 3*hidden_size]} } return split_linear_modules_map class EmbedND(nn.Module): def __init__(self, dim: int, theta: int, axes_dim: list[int]): super().__init__() self.dim = dim self.theta = theta self.axes_dim = axes_dim def forward(self, ids: Tensor) -> Tensor: n_axes = ids.shape[-1] emb = torch.cat( [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], dim=-3, ) return emb.unsqueeze(1) def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ t = time_factor * t half = dim // 2 freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to( t.device ) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) if torch.is_floating_point(t): embedding = embedding.to(t) return embedding class MLPEmbedder(nn.Module): def __init__(self, in_dim: int, hidden_dim: int): super().__init__() self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True) self.silu = nn.SiLU() self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True) def forward(self, x: Tensor) -> Tensor: return self.out_layer(self.silu(self.in_layer(x))) class RMSNorm(torch.nn.Module): def __init__(self, dim: int): super().__init__() self.scale = nn.Parameter(torch.ones(dim)) def forward(self, x: Tensor): x_dtype = x.dtype x = x.float() rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6) return (x * rrms).to(dtype=x_dtype) * self.scale class QKNorm(torch.nn.Module): def __init__(self, dim: int): super().__init__() self.query_norm = RMSNorm(dim) self.key_norm = RMSNorm(dim) def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]: if k != None: return self.key_norm(k).to(v) else: return self.query_norm(q).to(v) # q = self.query_norm(q) # k = self.key_norm(k) # return q.to(v), k.to(v) class SelfAttention(nn.Module): def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.norm = QKNorm(head_dim) self.proj = nn.Linear(dim, dim) def forward(self, x: Tensor, pe: Tensor) -> Tensor: raise Exception("not implemented") @dataclass class ModulationOut: shift: Tensor scale: Tensor gate: Tensor def split_mlp(mlp, x, divide = 8): x_shape = x.shape x = x.view(-1, x.shape[-1]) chunk_size = int(x.shape[0]/divide) chunk_size = int(x_shape[1]/divide) x_chunks = torch.split(x, chunk_size) for i, x_chunk in enumerate(x_chunks): mlp_chunk = mlp[0](x_chunk) mlp_chunk = mlp[1](mlp_chunk) x_chunk[...] = mlp[2](mlp_chunk) return x.reshape(x_shape) class Modulation(nn.Module): def __init__(self, dim: int, double: bool): super().__init__() self.is_double = double self.multiplier = 6 if double else 3 self.lin = nn.Linear(dim, self.multiplier * dim, bias=True) def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]: out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1) return ( ModulationOut(*out[:3]), ModulationOut(*out[3:]) if self.is_double else None, ) class DoubleStreamBlock(nn.Module): def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False): super().__init__() mlp_hidden_dim = int(hidden_size * mlp_ratio) self.num_heads = num_heads self.hidden_size = hidden_size self.img_mod = Modulation(hidden_size, double=True) self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.img_mlp = nn.Sequential( nn.Linear(hidden_size, mlp_hidden_dim, bias=True), nn.GELU(approximate="tanh"), nn.Linear(mlp_hidden_dim, hidden_size, bias=True), ) self.txt_mod = Modulation(hidden_size, double=True) self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.txt_mlp = nn.Sequential( nn.Linear(hidden_size, mlp_hidden_dim, bias=True), nn.GELU(approximate="tanh"), nn.Linear(mlp_hidden_dim, hidden_size, bias=True), ) def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]: img_mod1, img_mod2 = self.img_mod(vec) txt_mod1, txt_mod2 = self.txt_mod(vec) # prepare image for attention img_modulated = self.img_norm1(img) img_modulated.mul_(1 + img_mod1.scale) img_modulated.add_(img_mod1.shift) shape = (*img_modulated.shape[:2], self.num_heads, int(img_modulated.shape[-1] / self.num_heads) ) img_q = self.img_attn.q(img_modulated).view(*shape).transpose(1,2) img_k = self.img_attn.k(img_modulated).view(*shape).transpose(1,2) img_v = self.img_attn.v(img_modulated).view(*shape).transpose(1,2) del img_modulated img_q= self.img_attn.norm(img_q, None, img_v) img_k = self.img_attn.norm(None, img_k, img_v) # prepare txt for attention txt_modulated = self.txt_norm1(txt) txt_modulated.mul_(1 + txt_mod1.scale) txt_modulated.add_(txt_mod1.shift) shape = (*txt_modulated.shape[:2], self.num_heads, int(txt_modulated.shape[-1] / self.num_heads) ) txt_q = self.txt_attn.q(txt_modulated).view(*shape).transpose(1,2) txt_k = self.txt_attn.k(txt_modulated).view(*shape).transpose(1,2) txt_v = self.txt_attn.v(txt_modulated).view(*shape).transpose(1,2) del txt_modulated txt_q = self.txt_attn.norm(txt_q, None, txt_v) txt_k = self.txt_attn.norm(None, txt_k, txt_v) # run actual attention q = torch.cat((txt_q, img_q), dim=2) del txt_q, img_q k = torch.cat((txt_k, img_k), dim=2) del txt_k, img_k v = torch.cat((txt_v, img_v), dim=2) del txt_v, img_v qkv_list = [q, k, v] del q, k, v attn = attention(qkv_list, pe=pe) txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :] # calculate the img blocks img.addcmul_(self.img_attn.proj(img_attn), img_mod1.gate) mod_img = self.img_norm2(img) mod_img.mul_(1 + img_mod2.scale) mod_img.add_(img_mod2.shift) mod_img = split_mlp(self.img_mlp, mod_img) # mod_img = self.img_mlp(mod_img) img.addcmul_( mod_img, img_mod2.gate) mod_img = None # calculate the txt blocks txt.addcmul_(self.txt_attn.proj(txt_attn), txt_mod1.gate) txt.addcmul_(self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift), txt_mod2.gate) return img, txt class SingleStreamBlock(nn.Module): """ A DiT block with parallel linear layers as described in https://arxiv.org/abs/2302.05442 and adapted modulation interface. """ def __init__( self, hidden_size: int, num_heads: int, mlp_ratio: float = 4.0, qk_scale: float | None = None, ): super().__init__() self.hidden_dim = hidden_size self.num_heads = num_heads head_dim = hidden_size // num_heads self.scale = qk_scale or head_dim**-0.5 self.mlp_hidden_dim = int(hidden_size * mlp_ratio) # qkv and mlp_in self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim) # proj and mlp_out self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size) self.norm = QKNorm(head_dim) self.hidden_size = hidden_size self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.mlp_act = nn.GELU(approximate="tanh") self.modulation = Modulation(hidden_size, double=False) def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor: mod, _ = self.modulation(vec) x_mod = self.pre_norm(x) x_mod.mul_(1 + mod.scale) x_mod.add_(mod.shift) ##### More spagheti VRAM optimizations done by DeepBeepMeep ! # I am sure you are a nice person and as you copy this code, you will give me proper credits: # Please link to https://github.com/deepbeepmeep/Wan2GP and @deepbeepmeep on twitter # x_mod = (1 + mod.scale) * x + mod.shift shape = (*x_mod.shape[:2], self.num_heads, int(x_mod.shape[-1] / self.num_heads) ) q = self.linear1_attn_q(x_mod).view(*shape).transpose(1,2) k = self.linear1_attn_k(x_mod).view(*shape).transpose(1,2) v = self.linear1_attn_v(x_mod).view(*shape).transpose(1,2) q = self.norm(q, None, v) k = self.norm(None, k, v) # compute attention qkv_list = [q, k, v] del q, k, v attn = attention(qkv_list, pe=pe) # compute activation in mlp stream, cat again and run second linear layer x_mod_shape = x_mod.shape x_mod = x_mod.view(-1, x_mod.shape[-1]) chunk_size = int(x_mod_shape[1]/6) x_chunks = torch.split(x_mod, chunk_size) attn = attn.view(-1, attn.shape[-1]) attn_chunks =torch.split(attn, chunk_size) for x_chunk, attn_chunk in zip(x_chunks, attn_chunks): mlp_chunk = self.linear1_mlp(x_chunk) mlp_chunk = self.mlp_act(mlp_chunk) attn_mlp_chunk = torch.cat((attn_chunk, mlp_chunk), -1) del attn_chunk, mlp_chunk x_chunk[...] = self.linear2(attn_mlp_chunk) del attn_mlp_chunk x_mod = x_mod.view(x_mod_shape) x.addcmul_(x_mod, mod.gate) return x class LastLayer(nn.Module): def __init__(self, hidden_size: int, patch_size: int, out_channels: int): super().__init__() self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)) def forward(self, x: Tensor, vec: Tensor) -> Tensor: shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1) x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] x = self.linear(x) return x