import sys
import os
import json
import time
import psutil
# import ffmpeg
import imageio
from PIL import Image
import cv2
import torch
import torch.nn.functional as F
import numpy as np
import gradio as gr
from .tools.painter import mask_painter
from .tools.interact_tools import SamControler
from .tools.misc import get_device
from .tools.download_util import load_file_from_url
from segment_anything.modeling.image_encoder import window_partition, window_unpartition, get_rel_pos, Block as image_encoder_block
from .utils.get_default_model import get_matanyone_model
from .matanyone.inference.inference_core import InferenceCore
from .matanyone_wrapper import matanyone
arg_device = "cuda"
arg_sam_model_type="vit_h"
arg_mask_save = False
model_loaded = False
model = None
matanyone_model = None
model_in_GPU = False
matanyone_in_GPU = False
bfloat16_supported = False
# SAM generator
class MaskGenerator():
def __init__(self, sam_checkpoint, device):
global args_device
args_device = device
self.samcontroler = SamControler(sam_checkpoint, arg_sam_model_type, arg_device)
def first_frame_click(self, image: np.ndarray, points:np.ndarray, labels: np.ndarray, multimask=True):
mask, logit, painted_image = self.samcontroler.first_frame_click(image, points, labels, multimask)
return mask, logit, painted_image
# convert points input to prompt state
def get_prompt(click_state, click_input):
inputs = json.loads(click_input)
points = click_state[0]
labels = click_state[1]
for input in inputs:
points.append(input[:2])
labels.append(input[2])
click_state[0] = points
click_state[1] = labels
prompt = {
"prompt_type":["click"],
"input_point":click_state[0],
"input_label":click_state[1],
"multimask_output":"True",
}
return prompt
def get_frames_from_image(image_input, image_state):
"""
Args:
video_path:str
timestamp:float64
Return
[[0:nearest_frame], [nearest_frame:], nearest_frame]
"""
if image_input is None:
gr.Info("Please select an Image file")
return [gr.update()] * 17
user_name = time.time()
frames = [image_input] * 2 # hardcode: mimic a video with 2 frames
image_size = (frames[0].shape[0],frames[0].shape[1])
# initialize video_state
image_state = {
"user_name": user_name,
"image_name": "output.png",
"origin_images": frames,
"painted_images": frames.copy(),
"masks": [np.zeros((frames[0].shape[0],frames[0].shape[1]), np.uint8)]*len(frames),
"logits": [None]*len(frames),
"select_frame_number": 0,
"last_frame_numer": 0,
"fps": None
}
image_info = "Image Name: N/A,\nFPS: N/A,\nTotal Frames: {},\nImage Size:{}".format(len(frames), image_size)
set_image_encoder_patch()
select_SAM()
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(image_state["origin_images"][0])
torch.cuda.empty_cache()
return image_state, image_info, image_state["origin_images"][0], \
gr.update(visible=True, maximum=10, value=10), gr.update(visible=False, maximum=len(frames), value=len(frames)), \
gr.update(visible=True), gr.update(visible=True), \
gr.update(visible=True), gr.update(visible=True),\
gr.update(visible=True), gr.update(visible=False), \
gr.update(visible=False), gr.update(value="", visible=False), gr.update(visible=False), \
gr.update(visible=False), gr.update(visible=True), \
gr.update(visible=True)
# extract frames from upload video
def get_frames_from_video(video_input, video_state):
"""
Args:
video_path:str
timestamp:float64
Return
[[0:nearest_frame], [nearest_frame:], nearest_frame]
"""
if video_input is None:
gr.Info("Please select a Video file")
return [gr.update()] * 18
while model == None:
time.sleep(1)
video_path = video_input
frames = []
user_name = time.time()
# extract Audio
# try:
# audio_path = video_input.replace(".mp4", "_audio.wav")
# ffmpeg.input(video_path).output(audio_path, format='wav', acodec='pcm_s16le', ac=2, ar='44100').run(overwrite_output=True, quiet=True)
# except Exception as e:
# print(f"Audio extraction error: {str(e)}")
# audio_path = "" # Set to "" if extraction fails
# print(f'audio_path: {audio_path}')
audio_path = ""
# extract frames
try:
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
while cap.isOpened():
ret, frame = cap.read()
if ret == True:
current_memory_usage = psutil.virtual_memory().percent
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
if current_memory_usage > 90:
break
else:
break
except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e:
print("read_frame_source:{} error. {}\n".format(video_path, str(e)))
image_size = (frames[0].shape[0],frames[0].shape[1])
# resize if resolution too big
if image_size[0]>=1280 and image_size[0]>=1280:
scale = 1080 / min(image_size)
new_w = int(image_size[1] * scale)
new_h = int(image_size[0] * scale)
# update frames
frames = [cv2.resize(f, (new_w, new_h), interpolation=cv2.INTER_AREA) for f in frames]
# update image_size
image_size = (frames[0].shape[0],frames[0].shape[1])
# initialize video_state
video_state = {
"user_name": user_name,
"video_name": os.path.split(video_path)[-1],
"origin_images": frames,
"painted_images": frames.copy(),
"masks": [np.zeros((frames[0].shape[0],frames[0].shape[1]), np.uint8)]*len(frames),
"logits": [None]*len(frames),
"select_frame_number": 0,
"last_frame_number": 0,
"fps": fps,
"audio": audio_path
}
video_info = "Video Name: {},\nFPS: {},\nTotal Frames: {},\nImage Size:{}".format(video_state["video_name"], round(video_state["fps"], 0), len(frames), image_size)
set_image_encoder_patch()
select_SAM()
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(video_state["origin_images"][0])
torch.cuda.empty_cache()
return video_state, video_info, video_state["origin_images"][0], \
gr.update(visible=True, maximum=len(frames), value=1), gr.update(visible=True, maximum=len(frames), value=len(frames)), gr.update(visible=False, maximum=len(frames), value=len(frames)), \
gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), \
gr.update(visible=True), gr.update(visible=True),\
gr.update(visible=True), gr.update(visible=False), \
gr.update(visible=False), gr.update(visible=False), \
gr.update(visible=False), gr.update(visible=True), \
gr.update(visible=True)
# get the select frame from gradio slider
def select_video_template(image_selection_slider, video_state, interactive_state):
image_selection_slider -= 1
video_state["select_frame_number"] = image_selection_slider
# once select a new template frame, set the image in sam
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(video_state["origin_images"][image_selection_slider])
return video_state["painted_images"][image_selection_slider], video_state, interactive_state
def select_image_template(image_selection_slider, video_state, interactive_state):
image_selection_slider = 0 # fixed for image
video_state["select_frame_number"] = image_selection_slider
# once select a new template frame, set the image in sam
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(video_state["origin_images"][image_selection_slider])
return video_state["painted_images"][image_selection_slider], video_state, interactive_state
# set the tracking end frame
def get_end_number(track_pause_number_slider, video_state, interactive_state):
interactive_state["track_end_number"] = track_pause_number_slider
return video_state["painted_images"][track_pause_number_slider],interactive_state
def patched_forward(self, x: torch.Tensor) -> torch.Tensor:
def split_mlp(mlp, x, divide = 4):
x_shape = x.shape
x = x.view(-1, x.shape[-1])
chunk_size = int(x.shape[0]/divide)
x_chunks = torch.split(x, chunk_size)
for i, x_chunk in enumerate(x_chunks):
mlp_chunk = mlp.lin1(x_chunk)
mlp_chunk = mlp.act(mlp_chunk)
x_chunk[...] = mlp.lin2(mlp_chunk)
return x.reshape(x_shape)
def get_decomposed_rel_pos( q, rel_pos_h, rel_pos_w, q_size, k_size) -> torch.Tensor:
q_h, q_w = q_size
k_h, k_w = k_size
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
B, _, dim = q.shape
r_q = q.reshape(B, q_h, q_w, dim)
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
attn = torch.zeros(B, q_h, q_w, k_h, k_w, dtype=q.dtype, device=q.device)
attn += rel_h[:, :, :, :, None]
attn += rel_w[:, :, :, None, :]
return attn.view(B, q_h * q_w, k_h * k_w)
def pay_attention(self, x: torch.Tensor, split_heads = 1) -> torch.Tensor:
B, H, W, _ = x.shape
# qkv with shape (3, B, nHead, H * W, C)
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
if not bfloat16_supported: qkv = qkv.to(torch.float16)
# q, k, v with shape (B * nHead, H * W, C)
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
if split_heads == 1:
attn_mask = None
if self.use_rel_pos:
attn_mask = get_decomposed_rel_pos(q, self.rel_pos_h.to(q), self.rel_pos_w.to(q), (H, W), (H, W))
x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, scale=self.scale)
else:
chunk_size = self.num_heads // split_heads
x = torch.empty_like(q)
q_chunks = torch.split(q, chunk_size)
k_chunks = torch.split(k, chunk_size)
v_chunks = torch.split(v, chunk_size)
x_chunks = torch.split(x, chunk_size)
for x_chunk, q_chunk, k_chunk, v_chunk in zip(x_chunks, q_chunks, k_chunks, v_chunks):
attn_mask = None
if self.use_rel_pos:
attn_mask = get_decomposed_rel_pos(q_chunk, self.rel_pos_h.to(q), self.rel_pos_w.to(q), (H, W), (H, W))
x_chunk[...] = F.scaled_dot_product_attention(q_chunk, k_chunk, v_chunk, attn_mask=attn_mask, scale=self.scale)
del x_chunk, q_chunk, k_chunk, v_chunk
del q, k, v, attn_mask
x = x.view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
if not bfloat16_supported: x = x.to(torch.bfloat16)
return self.proj(x)
shortcut = x
x = self.norm1(x)
# Window partition
if self.window_size > 0:
H, W = x.shape[1], x.shape[2]
x, pad_hw = window_partition(x, self.window_size)
x_shape = x.shape
if x_shape[0] > 10:
chunk_size = int(x.shape[0]/4) + 1
x_chunks = torch.split(x, chunk_size)
for i, x_chunk in enumerate(x_chunks):
x_chunk[...] = pay_attention(self.attn,x_chunk)
else:
x = pay_attention(self.attn,x, 4)
# Reverse window partition
if self.window_size > 0:
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
x += shortcut
shortcut[...] = self.norm2(x)
# x += self.mlp(shortcut)
x += split_mlp(self.mlp, shortcut)
return x
def set_image_encoder_patch():
if not hasattr(image_encoder_block, "patched"): #and False
image_encoder_block.forward = patched_forward
image_encoder_block.patched = True
# use sam to get the mask
def sam_refine(video_state, point_prompt, click_state, interactive_state, evt:gr.SelectData ): #
"""
Args:
template_frame: PIL.Image
point_prompt: flag for positive or negative button click
click_state: [[points], [labels]]
"""
if point_prompt == "Positive":
coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1])
interactive_state["positive_click_times"] += 1
else:
coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1])
interactive_state["negative_click_times"] += 1
select_SAM()
# prompt for sam model
set_image_encoder_patch()
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(video_state["origin_images"][video_state["select_frame_number"]])
torch.cuda.empty_cache()
prompt = get_prompt(click_state=click_state, click_input=coordinate)
mask, logit, painted_image = model.first_frame_click(
image=video_state["origin_images"][video_state["select_frame_number"]],
points=np.array(prompt["input_point"]),
labels=np.array(prompt["input_label"]),
multimask=prompt["multimask_output"],
)
video_state["masks"][video_state["select_frame_number"]] = mask
video_state["logits"][video_state["select_frame_number"]] = logit
video_state["painted_images"][video_state["select_frame_number"]] = painted_image
torch.cuda.empty_cache()
return painted_image, video_state, interactive_state
def add_multi_mask(video_state, interactive_state, mask_dropdown):
mask = video_state["masks"][video_state["select_frame_number"]]
interactive_state["multi_mask"]["masks"].append(mask)
interactive_state["multi_mask"]["mask_names"].append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"])))
mask_dropdown.append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"])))
select_frame = show_mask(video_state, interactive_state, mask_dropdown)
return interactive_state, gr.update(choices=interactive_state["multi_mask"]["mask_names"], value=mask_dropdown), select_frame, [[],[]]
def clear_click(video_state, click_state):
click_state = [[],[]]
template_frame = video_state["origin_images"][video_state["select_frame_number"]]
return template_frame, click_state
def remove_multi_mask(interactive_state, mask_dropdown):
interactive_state["multi_mask"]["mask_names"]= []
interactive_state["multi_mask"]["masks"] = []
return interactive_state, gr.update(choices=[],value=[])
def show_mask(video_state, interactive_state, mask_dropdown):
mask_dropdown.sort()
if video_state["origin_images"]:
select_frame = video_state["origin_images"][video_state["select_frame_number"]]
for i in range(len(mask_dropdown)):
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
mask = interactive_state["multi_mask"]["masks"][mask_number]
select_frame = mask_painter(select_frame, mask.astype('uint8'), mask_color=mask_number+2)
return select_frame
def save_video(frames, output_path, fps):
writer = imageio.get_writer( output_path, fps=fps, codec='libx264', quality=8)
for frame in frames:
writer.append_data(frame)
writer.close()
return output_path
def mask_to_xyxy_box(mask):
rows, cols = np.where(mask == 255)
if len(rows) == 0 or len(cols) == 0: return []
xmin = min(cols)
xmax = max(cols) + 1
ymin = min(rows)
ymax = max(rows) + 1
xmin = max(xmin, 0)
ymin = max(ymin, 0)
xmax = min(xmax, mask.shape[1])
ymax = min(ymax, mask.shape[0])
box = [xmin, ymin, xmax, ymax]
box = [int(x) for x in box]
return box
# image matting
def image_matting(video_state, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size, refine_iter):
matanyone_processor = InferenceCore(matanyone_model, cfg=matanyone_model.cfg)
if interactive_state["track_end_number"]:
following_frames = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]]
else:
following_frames = video_state["origin_images"][video_state["select_frame_number"]:]
if interactive_state["multi_mask"]["masks"]:
if len(mask_dropdown) == 0:
mask_dropdown = ["mask_001"]
mask_dropdown.sort()
template_mask = interactive_state["multi_mask"]["masks"][int(mask_dropdown[0].split("_")[1]) - 1] * (int(mask_dropdown[0].split("_")[1]))
for i in range(1,len(mask_dropdown)):
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
template_mask = np.clip(template_mask+interactive_state["multi_mask"]["masks"][mask_number]*(mask_number+1), 0, mask_number+1)
video_state["masks"][video_state["select_frame_number"]]= template_mask
else:
template_mask = video_state["masks"][video_state["select_frame_number"]]
# operation error
if len(np.unique(template_mask))==1:
template_mask[0][0]=1
select_matanyone()
foreground, alpha = matanyone(matanyone_processor, following_frames, template_mask*255, r_erode=erode_kernel_size, r_dilate=dilate_kernel_size, n_warmup=refine_iter)
torch.cuda.empty_cache()
foreground_mat = False
output_frames = []
for frame_origin, frame_alpha in zip(following_frames, alpha):
if foreground_mat:
frame_alpha[frame_alpha > 127] = 255
frame_alpha[frame_alpha <= 127] = 0
else:
frame_temp = frame_alpha.copy()
frame_alpha[frame_temp > 127] = 0
frame_alpha[frame_temp <= 127] = 255
output_frame = np.bitwise_and(frame_origin, 255-frame_alpha)
frame_grey = frame_alpha.copy()
frame_grey[frame_alpha == 255] = 255
output_frame += frame_grey
output_frames.append(output_frame)
foreground = output_frames
foreground_output = Image.fromarray(foreground[-1])
alpha_output = alpha[-1][:,:,0]
frame_temp = alpha_output.copy()
alpha_output[frame_temp > 127] = 0
alpha_output[frame_temp <= 127] = 255
bbox_info = mask_to_xyxy_box(alpha_output)
h = alpha_output.shape[0]
w = alpha_output.shape[1]
if len(bbox_info) == 0:
bbox_info = ""
else:
bbox_info = [str(int(bbox_info[0]/ w * 100 )), str(int(bbox_info[1]/ h * 100 )), str(int(bbox_info[2]/ w * 100 )), str(int(bbox_info[3]/ h * 100 )) ]
bbox_info = ":".join(bbox_info)
alpha_output = Image.fromarray(alpha_output)
# return gr.update(value=foreground_output, visible= True), gr.update(value=alpha_output, visible= True), gr.update(value=bbox_info, visible= True), gr.update(visible=True), gr.update(visible=True)
return foreground_output, alpha_output, gr.update(visible = True), gr.update(visible = True), gr.update(value=bbox_info, visible= True), gr.update(visible=True), gr.update(visible=True)
# video matting
def video_matting(video_state,video_input, end_slider, matting_type, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size):
matanyone_processor = InferenceCore(matanyone_model, cfg=matanyone_model.cfg)
# if interactive_state["track_end_number"]:
# following_frames = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]]
# else:
end_slider = max(video_state["select_frame_number"] +1, end_slider)
following_frames = video_state["origin_images"][video_state["select_frame_number"]: end_slider]
if interactive_state["multi_mask"]["masks"]:
if len(mask_dropdown) == 0:
mask_dropdown = ["mask_001"]
mask_dropdown.sort()
template_mask = interactive_state["multi_mask"]["masks"][int(mask_dropdown[0].split("_")[1]) - 1] * (int(mask_dropdown[0].split("_")[1]))
for i in range(1,len(mask_dropdown)):
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
template_mask = np.clip(template_mask+interactive_state["multi_mask"]["masks"][mask_number]*(mask_number+1), 0, mask_number+1)
video_state["masks"][video_state["select_frame_number"]]= template_mask
else:
template_mask = video_state["masks"][video_state["select_frame_number"]]
fps = video_state["fps"]
audio_path = video_state["audio"]
# operation error
if len(np.unique(template_mask))==1:
template_mask[0][0]=1
select_matanyone()
foreground, alpha = matanyone(matanyone_processor, following_frames, template_mask*255, r_erode=erode_kernel_size, r_dilate=dilate_kernel_size)
torch.cuda.empty_cache()
output_frames = []
foreground_mat = matting_type == "Foreground"
new_alpha = []
if not foreground_mat:
for frame_alpha in alpha:
frame_temp = frame_alpha.copy()
frame_alpha[frame_temp > 127] = 0
frame_alpha[frame_temp <= 127] = 255
new_alpha.append(frame_alpha)
else:
for frame_alpha in alpha:
frame_alpha[frame_alpha > 127] = 255
frame_alpha[frame_alpha <= 127] = 0
new_alpha.append(frame_alpha)
alpha = new_alpha
# for frame_origin, frame_alpha in zip(following_frames, alpha):
# if foreground_mat:
# frame_alpha[frame_alpha > 127] = 255
# frame_alpha[frame_alpha <= 127] = 0
# else:
# frame_temp = frame_alpha.copy()
# frame_alpha[frame_temp > 127] = 0
# frame_alpha[frame_temp <= 127] = 255
# output_frame = np.bitwise_and(frame_origin, 255-frame_alpha)
# frame_grey = frame_alpha.copy()
# frame_grey[frame_alpha == 255] = 127
# output_frame += frame_grey
# output_frames.append(output_frame)
foreground = following_frames
if not os.path.exists("mask_outputs"):
os.makedirs("mask_outputs")
file_name= video_state["video_name"]
file_name = ".".join(file_name.split(".")[:-1])
from wan.utils.utils import extract_audio_tracks, combine_video_with_audio_tracks, cleanup_temp_audio_files
source_audio_tracks, audio_metadata = extract_audio_tracks(video_input)
output_fg_path = f"./mask_outputs/{file_name}_fg.mp4"
output_fg_temp_path = f"./mask_outputs/{file_name}_fg_tmp.mp4"
if len(source_audio_tracks) == 0:
foreground_output = save_video(foreground, output_path=output_fg_path , fps=fps)
else:
foreground_output_tmp = save_video(foreground, output_path=output_fg_temp_path , fps=fps)
combine_video_with_audio_tracks(output_fg_temp_path, source_audio_tracks, output_fg_path, audio_metadata=audio_metadata)
cleanup_temp_audio_files(source_audio_tracks)
os.remove(foreground_output_tmp)
foreground_output = output_fg_path
alpha_output = save_video(alpha, output_path="./mask_outputs/{}_alpha.mp4".format(file_name), fps=fps)
return foreground_output, alpha_output, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
def show_outputs():
return gr.update(visible=True), gr.update(visible=True)
def add_audio_to_video(video_path, audio_path, output_path):
pass
# try:
# video_input = ffmpeg.input(video_path)
# audio_input = ffmpeg.input(audio_path)
# _ = (
# ffmpeg
# .output(video_input, audio_input, output_path, vcodec="copy", acodec="aac")
# .run(overwrite_output=True, capture_stdout=True, capture_stderr=True)
# )
# return output_path
# except ffmpeg.Error as e:
# print(f"FFmpeg error:\n{e.stderr.decode()}")
# return None
def generate_video_from_frames(frames, output_path, fps=30, gray2rgb=False, audio_path=""):
"""
Generates a video from a list of frames.
Args:
frames (list of numpy arrays): The frames to include in the video.
output_path (str): The path to save the generated video.
fps (int, optional): The frame rate of the output video. Defaults to 30.
"""
frames = torch.from_numpy(np.asarray(frames))
_, h, w, _ = frames.shape
if gray2rgb:
frames = np.repeat(frames, 3, axis=3)
if not os.path.exists(os.path.dirname(output_path)):
os.makedirs(os.path.dirname(output_path))
video_temp_path = output_path.replace(".mp4", "_temp.mp4")
# resize back to ensure input resolution
imageio.mimwrite(video_temp_path, frames, fps=fps, quality=7,
codec='libx264', ffmpeg_params=["-vf", f"scale={w}:{h}"])
# add audio to video if audio path exists
if audio_path != "" and os.path.exists(audio_path):
output_path = add_audio_to_video(video_temp_path, audio_path, output_path)
os.remove(video_temp_path)
return output_path
else:
return video_temp_path
# reset all states for a new input
def restart():
return {
"user_name": "",
"video_name": "",
"origin_images": None,
"painted_images": None,
"masks": None,
"inpaint_masks": None,
"logits": None,
"select_frame_number": 0,
"fps": 30
}, {
"inference_times": 0,
"negative_click_times" : 0,
"positive_click_times": 0,
"mask_save": False,
"multi_mask": {
"mask_names": [],
"masks": []
},
"track_end_number": None,
}, [[],[]], None, None, \
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),\
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \
gr.update(visible=False), gr.update(visible=False, choices=[], value=[]), "", gr.update(visible=False)
# def load_sam():
# global model_loaded
# global model
# model.samcontroler.sam_controler.model.to(arg_device)
# global matanyone_model
# matanyone_model.to(arg_device)
def select_matanyone():
global matanyone_in_GPU, model_in_GPU
if matanyone_in_GPU: return
model.samcontroler.sam_controler.model.to("cpu")
model_in_GPU = False
torch.cuda.empty_cache()
matanyone_model.to(arg_device)
matanyone_in_GPU = True
def select_SAM():
global matanyone_in_GPU, model_in_GPU
if model_in_GPU: return
matanyone_model.to("cpu")
matanyone_in_GPU = False
torch.cuda.empty_cache()
model.samcontroler.sam_controler.model.to(arg_device)
model_in_GPU = True
def load_unload_models(selected):
global model_loaded
global model
global matanyone_model, matanyone_processor, matanyone_in_GPU , model_in_GPU, bfloat16_supported
if selected:
# print("Matanyone Tab Selected")
if model_loaded:
pass
# load_sam()
else:
# args, defined in track_anything.py
sam_checkpoint_url_dict = {
'vit_h': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
'vit_l': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
'vit_b': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth"
}
# os.path.join('.')
from mmgp import offload
# sam_checkpoint = load_file_from_url(sam_checkpoint_url_dict[arg_sam_model_type], ".")
sam_checkpoint = None
transfer_stream = torch.cuda.Stream()
with torch.cuda.stream(transfer_stream):
# initialize sams
major, minor = torch.cuda.get_device_capability(arg_device)
if major < 8:
bfloat16_supported = False
else:
bfloat16_supported = True
model = MaskGenerator(sam_checkpoint, "cpu")
model.samcontroler.sam_controler.model.to("cpu").to(torch.bfloat16).to(arg_device)
model_in_GPU = True
from .matanyone.model.matanyone import MatAnyone
matanyone_model = MatAnyone.from_pretrained("PeiqingYang/MatAnyone")
# pipe ={"mat" : matanyone_model, "sam" :model.samcontroler.sam_controler.model }
# offload.profile(pipe)
matanyone_model = matanyone_model.to("cpu").eval()
matanyone_in_GPU = False
matanyone_processor = InferenceCore(matanyone_model, cfg=matanyone_model.cfg)
model_loaded = True
else:
# print("Matanyone Tab UnSelected")
import gc
# model.samcontroler.sam_controler.model.to("cpu")
# matanyone_model.to("cpu")
model = matanyone_model = matanyone_processor = None
matanyone_in_GPU = model_in_GPU = False
gc.collect()
torch.cuda.empty_cache()
model_loaded = False
def get_vmc_event_handler():
return load_unload_models
def export_to_vace_video_input(foreground_video_output):
gr.Info("Masked Video Input transferred to Vace For Inpainting")
return "V#" + str(time.time()), foreground_video_output
def export_image(image_refs, image_output):
gr.Info("Masked Image transferred to Current Video")
if image_refs == None:
image_refs =[]
image_refs.append( image_output)
return image_refs
def export_image_mask(image_input, image_mask):
gr.Info("Input Image & Mask transferred to Current Video")
return Image.fromarray(image_input), image_mask
def export_to_current_video_engine( foreground_video_output, alpha_video_output):
gr.Info("Original Video and Full Mask have been transferred")
# return "MV#" + str(time.time()), foreground_video_output, alpha_video_output
return foreground_video_output, alpha_video_output
def teleport_to_video_tab(tab_state):
from wgp import set_new_tab
set_new_tab(tab_state, 0)
return gr.Tabs(selected="video_gen")
def display(tabs, tab_state, vace_video_input, vace_image_input, vace_video_mask, vace_image_mask, vace_image_refs):
# my_tab.select(fn=load_unload_models, inputs=[], outputs=[])
media_url = "https://github.com/pq-yang/MatAnyone/releases/download/media/"
# download assets
gr.Markdown("Mast Edition is provided by MatAnyone and VRAM optimized by DeepBeepMeep")
gr.Markdown("If you have some trouble creating the perfect mask, be aware of these tips:")
gr.Markdown("- Using the Matanyone Settings you can also define Negative Point Prompts to remove parts of the current selection.")
gr.Markdown("- Sometime it is very hard to fit everything you want in a single mask, it may be much easier to combine multiple independent sub Masks before producing the Matting : each sub Mask is created by selecting an area of an image and by clicking the Add Mask button. Sub masks can then be enabled / disabled in the Matanyone settings.")
gr.Markdown("The Mask Generation time and the VRAM consumed are proportional to the number of frames and the resolution. So if relevant, you may reduce the number of frames in the Matanyone Settings. You will need for the moment to resize yourself the video if needed.")
with gr.Column( visible=True):
with gr.Row():
with gr.Accordion("Video Tutorial (click to expand)", open=False, elem_classes="custom-bg"):
with gr.Row():
with gr.Column():
gr.Markdown("### Case 1: Single Target")
gr.Video(value="preprocessing/matanyone/tutorial_single_target.mp4", elem_classes="video")
with gr.Column():
gr.Markdown("### Case 2: Multiple Targets")
gr.Video(value="preprocessing/matanyone/tutorial_multi_targets.mp4", elem_classes="video")
with gr.Tabs():
with gr.TabItem("Video"):
click_state = gr.State([[],[]])
interactive_state = gr.State({
"inference_times": 0,
"negative_click_times" : 0,
"positive_click_times": 0,
"mask_save": arg_mask_save,
"multi_mask": {
"mask_names": [],
"masks": []
},
"track_end_number": None,
}
)
video_state = gr.State(
{
"user_name": "",
"video_name": "",
"origin_images": None,
"painted_images": None,
"masks": None,
"inpaint_masks": None,
"logits": None,
"select_frame_number": 0,
"fps": 16,
"audio": "",
}
)
with gr.Column( visible=True):
with gr.Row():
with gr.Accordion('MatAnyone Settings (click to expand)', open=False):
with gr.Row():
erode_kernel_size = gr.Slider(label='Erode Kernel Size',
minimum=0,
maximum=30,
step=1,
value=10,
info="Erosion on the added mask",
interactive=True)
dilate_kernel_size = gr.Slider(label='Dilate Kernel Size',
minimum=0,
maximum=30,
step=1,
value=10,
info="Dilation on the added mask",
interactive=True)
with gr.Row():
image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Start Frame", info="Choose the start frame for target assignment and video matting", visible=False)
end_selection_slider = gr.Slider(minimum=1, maximum=300, step=1, value=81, label="Last Frame to Process", info="Last Frame to Process", visible=False)
track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="End frame", visible=False)
with gr.Row():
point_prompt = gr.Radio(
choices=["Positive", "Negative"],
value="Positive",
label="Point Prompt",
info="Click to add positive or negative point for target mask",
interactive=True,
visible=False,
min_width=100,
scale=1)
matting_type = gr.Radio(
choices=["Foreground", "Background"],
value="Foreground",
label="Matting Type",
info="Type of Video Matting to Generate",
interactive=True,
visible=False,
min_width=100,
scale=1)
mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask Selection", info="Choose 1~all mask(s) added in Step 2", visible=False, scale=2)
# input video
with gr.Row(equal_height=True):
with gr.Column(scale=2):
gr.Markdown("## Step1: Upload video")
with gr.Column(scale=2):
step2_title = gr.Markdown("## Step2: Add masks (Several clicks then **`Add Mask`** one by one)", visible=False)
with gr.Row(equal_height=True):
with gr.Column(scale=2):
video_input = gr.Video(label="Input Video", elem_classes="video")
extract_frames_button = gr.Button(value="Load Video", interactive=True, elem_classes="new_button")
with gr.Column(scale=2):
video_info = gr.Textbox(label="Video Info", visible=False)
template_frame = gr.Image(label="Start Frame", type="pil",interactive=True, elem_id="template_frame", visible=False, elem_classes="image")
with gr.Row():
clear_button_click = gr.Button(value="Clear Clicks", interactive=True, visible=False, min_width=100)
add_mask_button = gr.Button(value="Set Mask", interactive=True, visible=False, min_width=100)
remove_mask_button = gr.Button(value="Remove Mask", interactive=True, visible=False, min_width=100) # no use
matting_button = gr.Button(value="Generate Video Matting", interactive=True, visible=False, min_width=100)
with gr.Row():
gr.Markdown("")
# output video
with gr.Column() as output_row: #equal_height=True
with gr.Row():
with gr.Column(scale=2):
foreground_video_output = gr.Video(label="Original Video Input", visible=False, elem_classes="video")
foreground_output_button = gr.Button(value="Black & White Video Output", visible=False, elem_classes="new_button")
with gr.Column(scale=2):
alpha_video_output = gr.Video(label="B & W Mask Video Output", visible=False, elem_classes="video")
export_image_mask_btn = gr.Button(value="Alpha Mask Output", visible=False, elem_classes="new_button")
with gr.Row():
with gr.Row(visible= False):
export_to_vace_video_14B_btn = gr.Button("Export to current Video Input Video For Inpainting", visible= False)
with gr.Row(visible= True):
export_to_current_video_engine_btn = gr.Button("Export to Control Video Input and Video Mask Input", visible= False)
export_to_current_video_engine_btn.click( fn=export_to_current_video_engine, inputs= [foreground_video_output, alpha_video_output], outputs= [vace_video_input, vace_video_mask]).then( #video_prompt_video_guide_trigger,
fn=teleport_to_video_tab, inputs= [tab_state], outputs= [tabs])
# first step: get the video information
extract_frames_button.click(
fn=get_frames_from_video,
inputs=[
video_input, video_state
],
outputs=[video_state, video_info, template_frame,
image_selection_slider, end_selection_slider, track_pause_number_slider, point_prompt, matting_type, clear_button_click, add_mask_button, matting_button, template_frame,
foreground_video_output, alpha_video_output, foreground_output_button, export_image_mask_btn, mask_dropdown, step2_title]
)
# second step: select images from slider
image_selection_slider.release(fn=select_video_template,
inputs=[image_selection_slider, video_state, interactive_state],
outputs=[template_frame, video_state, interactive_state], api_name="select_image")
track_pause_number_slider.release(fn=get_end_number,
inputs=[track_pause_number_slider, video_state, interactive_state],
outputs=[template_frame, interactive_state], api_name="end_image")
# click select image to get mask using sam
template_frame.select(
fn=sam_refine,
inputs=[video_state, point_prompt, click_state, interactive_state],
outputs=[template_frame, video_state, interactive_state]
)
# add different mask
add_mask_button.click(
fn=add_multi_mask,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[interactive_state, mask_dropdown, template_frame, click_state]
)
remove_mask_button.click(
fn=remove_multi_mask,
inputs=[interactive_state, mask_dropdown],
outputs=[interactive_state, mask_dropdown]
)
# video matting
matting_button.click(
fn=show_outputs,
inputs=[],
outputs=[foreground_video_output, alpha_video_output]).then(
fn=video_matting,
inputs=[video_state, video_input, end_selection_slider, matting_type, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size],
outputs=[foreground_video_output, alpha_video_output,foreground_video_output, alpha_video_output, export_to_vace_video_14B_btn, export_to_current_video_engine_btn]
)
# click to get mask
mask_dropdown.change(
fn=show_mask,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[template_frame]
)
# clear input
video_input.change(
fn=restart,
inputs=[],
outputs=[
video_state,
interactive_state,
click_state,
foreground_video_output, alpha_video_output,
template_frame,
image_selection_slider, end_selection_slider, track_pause_number_slider,point_prompt, export_to_vace_video_14B_btn, export_to_current_video_engine_btn, matting_type, clear_button_click,
add_mask_button, matting_button, template_frame, foreground_video_output, alpha_video_output, remove_mask_button, foreground_output_button, export_image_mask_btn, mask_dropdown, video_info, step2_title
],
queue=False,
show_progress=False)
video_input.clear(
fn=restart,
inputs=[],
outputs=[
video_state,
interactive_state,
click_state,
foreground_video_output, alpha_video_output,
template_frame,
image_selection_slider , end_selection_slider, track_pause_number_slider,point_prompt, export_to_vace_video_14B_btn, export_to_current_video_engine_btn, matting_type, clear_button_click,
add_mask_button, matting_button, template_frame, foreground_video_output, alpha_video_output, remove_mask_button, foreground_output_button, export_image_mask_btn, mask_dropdown, video_info, step2_title
],
queue=False,
show_progress=False)
# points clear
clear_button_click.click(
fn = clear_click,
inputs = [video_state, click_state,],
outputs = [template_frame,click_state],
)
with gr.TabItem("Image"):
click_state = gr.State([[],[]])
interactive_state = gr.State({
"inference_times": 0,
"negative_click_times" : 0,
"positive_click_times": 0,
"mask_save": False,
"multi_mask": {
"mask_names": [],
"masks": []
},
"track_end_number": None,
}
)
image_state = gr.State(
{
"user_name": "",
"image_name": "",
"origin_images": None,
"painted_images": None,
"masks": None,
"inpaint_masks": None,
"logits": None,
"select_frame_number": 0,
"fps": 30
}
)
with gr.Group(elem_classes="gr-monochrome-group", visible=True):
with gr.Row():
with gr.Accordion('MatAnyone Settings (click to expand)', open=False):
with gr.Row():
erode_kernel_size = gr.Slider(label='Erode Kernel Size',
minimum=0,
maximum=30,
step=1,
value=10,
info="Erosion on the added mask",
interactive=True)
dilate_kernel_size = gr.Slider(label='Dilate Kernel Size',
minimum=0,
maximum=30,
step=1,
value=10,
info="Dilation on the added mask",
interactive=True)
with gr.Row():
image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Num of Refinement Iterations", info="More iterations → More details & More time", visible=False)
track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track end frame", visible=False)
with gr.Row():
point_prompt = gr.Radio(
choices=["Positive", "Negative"],
value="Positive",
label="Point Prompt",
info="Click to add positive or negative point for target mask",
interactive=True,
visible=False,
min_width=100,
scale=1)
mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask Selection", info="Choose 1~all mask(s) added in Step 2", visible=False)
with gr.Column():
# input image
with gr.Row(equal_height=True):
with gr.Column(scale=2):
gr.Markdown("## Step1: Upload image")
with gr.Column(scale=2):
step2_title = gr.Markdown("## Step2: Add masks (Several clicks then **`Add Mask`** one by one)", visible=False)
with gr.Row(equal_height=True):
with gr.Column(scale=2):
image_input = gr.Image(label="Input Image", elem_classes="image")
extract_frames_button = gr.Button(value="Load Image", interactive=True, elem_classes="new_button")
with gr.Column(scale=2):
image_info = gr.Textbox(label="Image Info", visible=False)
template_frame = gr.Image(type="pil", label="Start Frame", interactive=True, elem_id="template_frame", visible=False, elem_classes="image")
with gr.Row(equal_height=True, elem_classes="mask_button_group"):
clear_button_click = gr.Button(value="Clear Clicks", interactive=True, visible=False, elem_classes="new_button", min_width=100)
add_mask_button = gr.Button(value="Add Mask", interactive=True, visible=False, elem_classes="new_button", min_width=100)
remove_mask_button = gr.Button(value="Remove Mask", interactive=True, visible=False, elem_classes="new_button", min_width=100)
matting_button = gr.Button(value="Image Matting", interactive=True, visible=False, elem_classes="green_button", min_width=100)
# output image
with gr.Row(equal_height=True):
foreground_image_output = gr.Image(type="pil", label="Foreground Output", visible=False, elem_classes="image")
alpha_image_output = gr.Image(type="pil", label="Mask", visible=False, elem_classes="image")
with gr.Row(equal_height=True):
bbox_info = gr.Text(label ="Mask BBox Info (Left:Top:Right:Bottom)", visible = False, interactive= False)
with gr.Row():
# with gr.Row():
export_image_btn = gr.Button(value="Add to current Reference Images", visible=False, elem_classes="new_button")
# with gr.Column(scale=2, visible= True):
export_image_mask_btn = gr.Button(value="Set to Control Image & Mask", visible=False, elem_classes="new_button")
export_image_btn.click( fn=export_image, inputs= [vace_image_refs, foreground_image_output], outputs= [vace_image_refs]).then( #video_prompt_video_guide_trigger,
fn=teleport_to_video_tab, inputs= [tab_state], outputs= [tabs])
export_image_mask_btn.click( fn=export_image_mask, inputs= [image_input, alpha_image_output], outputs= [vace_image_input, vace_image_mask]).then( #video_prompt_video_guide_trigger,
fn=teleport_to_video_tab, inputs= [tab_state], outputs= [tabs])
# first step: get the image information
extract_frames_button.click(
fn=get_frames_from_image,
inputs=[
image_input, image_state
],
outputs=[image_state, image_info, template_frame,
image_selection_slider, track_pause_number_slider,point_prompt, clear_button_click, add_mask_button, matting_button, template_frame,
foreground_image_output, alpha_image_output, bbox_info, export_image_btn, export_image_mask_btn, mask_dropdown, step2_title]
)
# points clear
clear_button_click.click(
fn = clear_click,
inputs = [image_state, click_state,],
outputs = [template_frame,click_state],
)
# second step: select images from slider
image_selection_slider.release(fn=select_image_template,
inputs=[image_selection_slider, image_state, interactive_state],
outputs=[template_frame, image_state, interactive_state], api_name="select_image")
track_pause_number_slider.release(fn=get_end_number,
inputs=[track_pause_number_slider, image_state, interactive_state],
outputs=[template_frame, interactive_state], api_name="end_image")
# click select image to get mask using sam
template_frame.select(
fn=sam_refine,
inputs=[image_state, point_prompt, click_state, interactive_state],
outputs=[template_frame, image_state, interactive_state]
)
# add different mask
add_mask_button.click(
fn=add_multi_mask,
inputs=[image_state, interactive_state, mask_dropdown],
outputs=[interactive_state, mask_dropdown, template_frame, click_state]
)
remove_mask_button.click(
fn=remove_multi_mask,
inputs=[interactive_state, mask_dropdown],
outputs=[interactive_state, mask_dropdown]
)
# image matting
matting_button.click(
fn=image_matting,
inputs=[image_state, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size, image_selection_slider],
outputs=[foreground_image_output, alpha_image_output,foreground_image_output, alpha_image_output,bbox_info, export_image_btn, export_image_mask_btn]
)